By applying Newton's second law of motion;
ma = mg - T
Where,
m = mass; a = downward accelerations (+ve value) or upward acceleration (-ve value); g = gravitational acceleration; T = tension.
For the current case, the velocity is constant therefore,
a = 0
Then,
0 = mg - T
T = mg = 115*9.81 = 1128.15 N
Tension in the cable is 1128.15 N.
Properly input current above 40 voltage or 100 for example elecrical fan machine is used to perform a task, work output is always more than work
Answer:
0.25 m/s
Explanation:
From the law of conservation of momentum
Mu+ mu = Mv' + m v
M= mass of the astronaut = 80 kg
m= mass of the oxygen tank= 10 Kg
v= speedof the tank 2 m/s
u= initial velocity of the system= 0
If we substitute the values, we have
( 80× 0 )+(10×0)= [(80 x v )+ (10 x 2)]
0= 80v + 20
-20=80v
v= -0.25 m/s ( we have a negative value because the astronaut and the motion of the cylinder are in opposite direction)
Hence the velocity the astronaut start to move off into space is 0.25 m/s
Explanation:
The given data is as follows.
mass, m = 75 g


Specific heat of water = 4.18
First, we will calculate the heat required for water is as follows.
q = 
= 
= 8464.5 J/mol
= 8.46 kJ ......... (1)
Also, it is given that
= (20 + 273) K = 293 K and specific heat of ice is 2.108 kJ/kg K.
Now, we will calculate the heat of fusion as follows.
q = 
= 
= -46.32 kJ ......... (2)
Now, adding both equations (1) and (2) as follows.
8.46 kJ - 46.32 kJ
= -37.86 kJ
Therefore, we can conclude that energy in the form of heat (in kJ) required to change 75.0 g of liquid water at
to ice at
is -37.86 kJ.