Answer:
2.0 M
Explanation:
Step 1: Given data
- Mass of NaCl (solute): 2.93 g
- Volume of the solution: 0.025 L
Step 2: Calculate the moles corresponding to 2.93 g of NaCl
The molar mass of NaCl is 58.44 g/mol.
2.93 g × 1 mol/58.44 g = 0.0501 mol
Step 3: Calculate the molarity of the solution
Molarity is equal to the moles of solute divided by the liters of solution.
M = 0.0501 mol/0.025 L = 2.0 M
The moles of water that are produced from 373 moles of ammonia present in any chemical reaction is 746 moles.
<h3>What is the stoichiometry?</h3>
Stoichiometry of the reaction gives idea about the amount of entities present in any chemical reaction before and after the reaction.
Given chemical reaction is:
3Al + 3NH₄ClO₄ → Al₂O₃ + AlCl₃ + 3NO + 6H₂O
From the stoichiometry of the reaction it is clear that:
3 moles of Al = produces 6 moles of H₂O
373 moles of Al = produces 6/3×373 = 746 moles of H₂O
Hence required moles of water is 746 moles.
To know more about stoichiometry, visit the below link:
brainly.com/question/21931988
The empirical formula of this compound is equal to
.
<h3>
Empirical formula</h3>
To calculate the empirical formula of a compound, it is necessary to know the number of moles present.
Therefore, we will use the molar mass of iron and oxygen to find the amount of moles, so that:






Finally, as the empirical formula is composed of integers numbers of moles, just multiply the values by the smallest common factor to transform into an integer, so that:
O => 
Fe => 
So, the empirical formula of this compound is equal to 
Learn more about empirical formula in: brainly.com/question/1363167
Answer:
The pond has more energy because I is so much larger that the Cup of boiling water. Since that mass of the pond is so much larger, It is generating more energy than a boiling cup of water.
Answer:
the answer is D the dominant over powers the resecive traits