IF there is no air resistance, then he could drop a feather, a piece
of Kleenex, a school bus, and a battleship. If he dropped them all
at the same time from the same height, they would all hit the ground
at the same time.
Answer:
Image B
Explanation:
although I'm not exactly sure, i've recently gotten this question as well. but model B demonstrates the force- distance trade off because you can see how in that image them distance is increased in the force is decreased with the object being shorter. hopefully this helps in some way
Answer: ∆L = 0.49cm ≈ 0.50cm
Therefore there should be 0.5 cm gap between each piece of steel.
Explanation:
Thermal expansion of steel is the increase in size of steel as a result of increased temperature. It can be represented by the mathematical expression:
∆L = L(k)∆T .....1
Where;
∆L is the change in length
L is the initial length
∆T is the change in temperature
k is the specific Linear expansion coefficient.
Given;
L = 12m
∆T = 50°C - 16°C = 34°C
k (for steel) = 1.2 × 10^-6 /C
Substituting the values into the equation 1
∆L = 12 × 34 × 12×10^-6
∆L = 4896 × 10^-6 m
∆L = 0.49cm ≈ 0.50cm
Therefore there should be 0.5 cm gap between each piece of steel.
Continental drifts i'm pretty sure
Machine C. Machine A has an efficiency of 250/1000 = 0.25 = 25%, Machine B's efficiency is 350/500 = 0.7 = 70% and Machine C has an efficiency of 150/200 = 0.75 = 75%.