The discriminante :
b^2-4ac
1^2 - 4 * -2 * -28 = 1 - 224 = -223
When the discriminant (b^2-4ac) is less than 0, the equation had no real solutions.
-223<0, so, 2x^2+x-28 = 0 has no real solutions.
Hope that helps :)
The best way to solve is by using elimination method.
20x = -58 - 2y
17x = -49 - 2y
Multiply second equation by -1
20x = -58 - 2y
-17x = 49 + 2y
Add equations.
3x = -9
Divide.
x = -3
Plug in -3 into one of the equations.
17(-3) = -49 - 2y
-51 = -49 - 2y
Add 49 to both sides.
-2 = -2y
Divide.
1 = y
So your solution is (-3, 1).
I hope this helps love! :)
Answer:
An example below
Step-by-step explanation:
5(4a + 7(a + 2b))
First simply the inside bracket using distributive property:
7(a + 2b)
7(a) + 7(2b)
7a + 14b
5(4a + 7a + 14b)
5(11a + 14b)
Use distributive property again
5(11a) + 5(14b)
55a + 70b
Answer:ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
Step-by-step explanation:
The set of x ordinates or {1,2,3}