2. The object's volume.
3. The density of the liquid.
Remember what the buoyant force is. It's the lifting force caused by the displacement of a fluid. I'm using the word fluid because it can be either a liquid or gas. For instance a helium balloon floats due to the buoyant force exceeding the mass of the balloon. So let's look at the options and see what's correct.
1. Object's mass
* This doesn't affect the buoyant force directly. It can have an effect if the object's mass is lower than the buoyant force being exerted. Think of a boat as an example. The boat is floating on the top of the water. If cargo is loaded into the boat, the boat sinks further into the water until the increased buoyant force matches the increased mass of the boat. But if the density of the object exceeds the density of the fluid, then increasing the mass of the object will not affect the buoyant force. So this is a bad choice.
2. The object's volume.
* Yes, this directly affects the buoyant force. So this is a good choice.
3. The density of the liquid.
* Yes, this directly affects the buoyant force. You can drop a piece of iron into water and it will sink. You could also drop that same piece of iron into mercury and it will float. The reason is that mercury has a much higher density than water. So this is a good choice.
4. Mass of the liquid
* No. Do not mistake mass for density. As a mental exercise, imagine the buoyant force on a small piece of metal dropped into a swimming pool. Now imagine the buoyant force on that same piece of metal dropped into a lake. In both cases, the buoyant force is the same, yet the lake has a far greater mass of water than the swimming pool. So this is a bad choice.
Explanation:
when an object speeds up,it has positive acceleration.
hope it helps....
Answer:
Explanation:
Given
Temperature of gas 
Volume of gas 
no of moles of gas 
Using Ideal gas Equation to find the Pressure of gas

where P=Absolute Pressure
V=Volume
R=Universal gas constant
T=Temperature



And we know Atmospheric Pressure is 
Therefore Gauge pressure is given by



A mass suspended from a spring is oscillating up and down, (as stated but not indicated).
A). At some point during the oscillation the mass has zero velocity but its acceleration is non-zero (can be either positive or negative). <em>Yes. </em> This statement is true at the top and bottom ends of the motion.
B). At some point during the oscillation the mass has zero velocity and zero acceleration. No. If the mass is bouncing, this is never true. It only happens if the mass is hanging motionless on the spring.
C). At some point during the oscillation the mass has non-zero velocity (can be either positive or negative) but has zero acceleration. <em>Yes.</em> This is true as the bouncing mass passes through the "zero point" ... the point where the upward force of the stretched spring is equal to the weight of the mass. At that instant, the vertical forces on the mass are balanced, and the net vertical force is zero ... so there's no acceleration at that instant, because (as Newton informed us), A = F/m .
D). At all points during the oscillation the mass has non-zero velocity and has nonzero acceleration (either can be positive or negative). No. This can only happen if the mass is hanging lifeless from the spring. If it's bouncing, then It has zero velocity at the top and bottom extremes ... where acceleration is maximum ... and maximum velocity at the center of the swing ... where acceleration is zero.
Answer:
Kinetic Theory states that pressure is not cause by molecule that push molecule to each other
Explanation:
Kinetic Theory
it is also known as kinetic molecular theory or the collision theory
Kinetic theory explain you property of gas such as
(1) pressure, (2) temperature, (3) volume
Kinetic Theory states that pressure is not cause by molecule that push molecule to each other and pressure is caused by molecule colliding with the each other and with the container
3 component of
kinetic theory are
-
when the molecules collide, there no energy is gain or lost
- In the gas molecule take approx negligible amount of space
- molecules are in constant and linear motion