Answer: So, your relative takes N tablets each 6 hours. a day has 24 hours, and 24/6 = 4, so he takes N tablets 4 times per day, so he takes 4*N tablets.
each tablet has 200mg, and 2.3 g (or 2300 mg) is toxic.
this means that 4*N*200mg must be less than 2300, if we are seeking for the maximum N possible, then:
4*N*200mg = 2300mg
4*N = 2300/200 = 11.5
N = 11.5/4 = 2.87
if you round up this number, you will end up taking more than 2.3g of tylenol per day, this implies that N must be equal to 2.
So your relative needs to take maximum 2 tablets per day.
Answer:
-3.5+27
Step-by-step explanation:
-2.7+x=-3.5
x=-3.5-(-2.5)
x=-3.5+2.5
x=2.0
Answer:
we predict 2,587 persons will adopt dogs
Step-by-step explanation:
out of 40 persons 23 adopt dogs
Then
out of 40×25 persons 23×25 adopt dogs
Then
out of 1000 persons 575 adopt dogs
Then
out of 1000×4.5persons 575×4.5 adopt dogs
Then
out of 4,500 persons 2,587.5 adopt dogs
Method 2 :
Let x Ben the number of persons we predict they will adopt dogs:
Here we have a proportional relationship:
Then


Answer:
function A
Step-by-step explanation:
because that is the answer
Answer:
50°
<u>In</u><u> </u><u>order</u><u> </u><u>to</u><u> </u><u>determine</u><u> </u><u>the</u><u> </u><u>unknown</u><u> </u><u>angle</u><u>,</u><u> </u><u>be</u><u> </u><u>sure</u><u> </u><u>to</u><u> </u><u>use</u><u> </u><u>the</u><u> </u><u>total</u><u> </u><u>sum</u><u> </u><u>of</u><u> </u><u>1</u><u>8</u><u>0</u><u>°</u><u> </u>
120° - 180°= <em><u>60°</u> </em>( this give you the red side inside the triangle)
Then you simple add the two number inside the triangle
<em><u>6</u><u>0</u><u>°</u></em> + 70° = <em><u>130°</u></em>( then you use this to find the missing corner by subtracting from 180°)
180°- <u>1</u><u>3</u><u>0</u><u>°</u> = 50° this is your missing angle X"
To prove it simple add all the 3 angles inside the triangle add up to 180°
<u>6</u><u>0</u><u>°</u> + <u>7</u><u>0</u><u>°</u> + <u>5</u><u>0</u><u>°</u> = <u>1</u><u>8</u><u>0</u><u>°</u>
<u>X</u><u> </u><u>=</u><u> </u><u>5</u><u>0</u><u>°</u>