Answer: no soultions
Step-by-step explanation:
The best answer from the options that proves that the residual plot shows that the line of best fit is appropriate for the data is: ( Statement 1 ) Yes, because the points have no clear pattern
X Given Predicted Residual value
1 3.5 4.06 -0.56
2 2.3 2.09 0.21
3 1.1 0.12 0.98
4 2.2 -1.85 4.05
5 -4.1 -3.82 -0.28
The residual value is calculated as follows using this formula: ( Given - predicted )
1) ( 3.5 - 4.06 ) = -0.56
2) ( 2.3 - 2.09 ) = 0.21
3) ( 1.1 - 0.12 ) = 0.98
4) (2.2 - (-1.85) = 4.05
5) ( -4.1 - (-3.82) = -0.28
Residual values are the difference between the given values and the predicted values in a given data set and the residual plot is used to represent these values .
attached below is the residual plot of the data set
hence we can conclude from the residual plot attached below that the line of best fit is appropriate for the data because the points have no clear pattern ( i.e. scattered )
learn more about residual plots : brainly.com/question/16821224
1824 the estimate is 1820
Answer:
4
3
0
Step-by-step explanation:
f(x) = y = -1/2 × sqrt(x+3)
2y = -sqrt(x+3)
4y² = x + 3
x = 4y² - 3
now renaming this, so that the normal symbols and names are used for this function definition, so that the input variable is called "x" :
f-1(x) = 4x² - 3
basically, just by itself, this function would be defined for all possible real values of x.
but because it is the inverse of the original function, which generates only values of y<=0, then for the inverse function that same range applies for its input variable x
x<=0