Answer:
![-\frac{3\sqrt[3]{t} }{2}](https://tex.z-dn.net/?f=-%5Cfrac%7B3%5Csqrt%5B3%5D%7Bt%7D%20%7D%7B2%7D)
Step-by-step explanation:
1: Write g(t) as y, resulting in 
2: Interchange the variables y and t, resulting in 
3: Multiply both sides by 27, resulting in 
4: Divide both sides by -8, resulting in 
5: Find the cube root of both sides, resulting in ![\sqrt[3]{-\frac{27t}{8} }=y](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-%5Cfrac%7B27t%7D%7B8%7D%20%7D%3Dy)
6: Apply a radical rule, resulting in ![-\sqrt[3]{\frac{27t}{8} } =y](https://tex.z-dn.net/?f=-%5Csqrt%5B3%5D%7B%5Cfrac%7B27t%7D%7B8%7D%20%7D%20%3Dy)
7: Apply another radical rule, resulting in ![-\frac{\sqrt[3]{27t} }{\sqrt[3]{8} } =y](https://tex.z-dn.net/?f=-%5Cfrac%7B%5Csqrt%5B3%5D%7B27t%7D%20%7D%7B%5Csqrt%5B3%5D%7B8%7D%20%7D%20%3Dy)
8: Simplify the denominator, resulting in ![-\frac{\sqrt[3]{27t} }{2} =y](https://tex.z-dn.net/?f=-%5Cfrac%7B%5Csqrt%5B3%5D%7B27t%7D%20%7D%7B2%7D%20%3Dy)
9: Apply yet another radical rule, resulting in ![-\frac{\sqrt[3]{27}\sqrt[3]{t} }{2} =y](https://tex.z-dn.net/?f=-%5Cfrac%7B%5Csqrt%5B3%5D%7B27%7D%5Csqrt%5B3%5D%7Bt%7D%20%20%20%7D%7B2%7D%20%3Dy)
10: Simplify
, resulting in ![-\frac{3\sqrt[3]{t} }{2} =y](https://tex.z-dn.net/?f=-%5Cfrac%7B3%5Csqrt%5B3%5D%7Bt%7D%20%20%20%7D%7B2%7D%20%3Dy)
Answer:
Step-by-step explanation:
Start with the given inequality and solve it for x.
First, add 4 to both sides: 5x > 25
Next, divide both sides by 5: x > 5
The solution (set) is x > 5.
Answer:
The measure of ∠EFG is 52°
Step-by-step explanation:
Given line m is parallel to line p. m∠HEF = 39º and m∠IGF = 13º.we have to find m∠EFG.
In ΔJFG,
By angle sum property of triangle, which states that sum of all angles of triangle is 180°
m∠FJG+m∠JGF+m∠JFG=180°
⇒ 39°+13°+m∠JFG=180°
⇒ m∠JFG=180°-39°-13°=128°
As JFE is a straight line ∴ ∠JFG and ∠EFG forms linear pair
⇒ m∠JFG+m∠EFG=180°
⇒ 128°+m∠EFG=180°
⇒ m∠EFG=52°
The measure of ∠EFG is 52°
Yo sup??
since WY is the perpendicular bisector we can say
3x-5=2x+3
x=8
Hope this helps
When x=-5, y=(1/5)*(-5)-1=-2, so the first order pair is (-5,-2)
when y=-1, -1=(1/5)x-1, (1/5)x=0, x=0, so the second ordered pair is (0, -1)