1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
densk [106]
2 years ago
14

Yes or no linear equations??

Mathematics
2 answers:
Sophie [7]2 years ago
7 0
The answer is yes for question A it is linear
77julia77 [94]2 years ago
3 0
For C. The answer is yes
You might be interested in
The density of granite is about 2.75 grams per cubic centimeter. Suppose you have a granite countertop for a kitchen that is 1 m
Ugo [173]

Answer:

equation: 2.75 g/cm^3 * 1 m *3 m* (100 cm/1 m)^2 *4 cm * (1 kg/1000 g)

Step-by-step explanation:

countertop mass, m =?

density, ρ = 2.75 g/cm^3

wide, w = 1 m

long,  l = 3 m

thick, t = 4 cm

countertop volume, V = w*l*t = 1 m *3 m*4 cm* (100 cm/1 m)^2

Isolating mass from density definition gives

ρ = m/V

m = ρ*V

m = 2.75 g/cm^3 * 1 m *3 m* (100 cm/1 m)^2 *4 cm * (1 kg/1000 g)

7 0
4 years ago
Read 2 more answers
tim measures a water tower (cylinder) with the circumference of 62.8cm and height of 11.5cm, in his town a person needs 300cm3 o
miss Akunina [59]

Answer:

about 12 people

Step-by-step explanation:

cir.=2πr=62.8 , so r=31.4/π , vol of tower= base area × hight = πr² × 11.5 ≈ 3609.17 cm³ , number of people= vol/300 ≈ 12

7 0
3 years ago
-x^2+5x-3 What point lies on the graph (0, 3) (1,4) (-2, 2) or (2,)
Nata [24]
Ushzhzhzjzjzjzjxhxhxhxhxjsjsjdjdjdudificicucucuc
7 0
3 years ago
Integration questions .
dlinn [17]
<h2>1)</h2>

\\\\\ \textbf{a)}\\\\~~~\displaystyle \int (6x- \sin 3x) ~ dx\\\\=6\displaystyle \int x ~ dx - \displaystyle \int \sin 3x ~ dx\\\\=6 \cdot \dfrac{x^2}2 - \dfrac 13 (- \cos 3x) +C~~~~~~~~~~~;\left[\displaystyle \int x^n~ dx = \dfrac{x^{n+1}}{n+1}+C,~~~n \neq -1\right]\\\\ =3x^2 +\dfrac{\cos 3x}3 +C~~~~~~~~~~~~~~~~~~~~;\left[\displaystyle \int \sin (mx) ~dx = -\dfrac 1m ~ (\cos mx)+C \right]\\

\textbf{b)}\\\\~~~~\displaystyle \int(3e^{-2x} +\cos (0.5 x)) dx\\\\=3\displaystyle \int e^{-2x} ~dx+ \displaystyle \int \cos(0.5 x) ~dx\\\\\\=-\dfrac 32 e^{-2x} + \dfrac 1{0.5} \sin (0.5 x) +C~~~~~~~~~~~~~~;\left[\displaystyle \int e^{mx}~dx = \dfrac 1m e^{mx} +C \right]\\\\\\=-\dfrac 32 e^{-2x} + 2 \sin(0.5 x) +C~~~~~~~~~~~~~~~~~;\left[\displaystyle \int \cos(mx)~ dx  = \dfrac 1m \sin(mx) +C\right]\\\\\\=-1.5e^{-2x} +2\sin(0.5x) +C

<h2>2)</h2>

\textbf{a)}\\\\y = \displaystyle \int \cos(x+5) ~ dx\\\\\text{Let,}\\\\~~~~~~~u = x+5\\\\\implies \dfrac{du}{dx} = 1+0~~~~~~;[\text{Differentiate both sides.}]\\\\\implies \dfrac{du}{dx} = 1\\\\\implies du = dx\\\\\text{Now,}\\\\y= \displaystyle \int \cos u ~ du\\\\~~~= \sin u +C\\\\~~~=\sin(x+5) + C

\textbf{b)}\\\\y = \displaystyle \int 2(5x-3)^4 dx\\\\\text{Let,}\\~~~~~~~~u = 5x-3\\\\\implies \dfrac{du}{dx} = 5~~~~~~~~~~;[\text{Differentiate both sides}]\\\\\implies dx = \dfrac{du}5\\\\\text{Now,}\\\\y = 2\cdot \dfrac 1  5 \displaystyle \int u^4 ~ du\\\\\\~~=\dfrac 25 \cdot \dfrac{u^{4+1}}{4+1} +C\\\\\\~~=\dfrac 25 \cdot \dfrac{u^5}5+C\\\\\\~~=\dfrac{2u^5}{25}+C\\\\\\~~=\dfrac{2(5x-3)^5}{25}+C

<h2>3)</h2>

\textbf{a)}\\\\y =  \displaystyle \int xe^{3x} dx\\\\\text{We know that,}\\\\ \displaystyle \int  (uv) ~dx = u  \displaystyle \int  v ~ dx -  \displaystyle \int \left[ \dfrac{du}{dx} \displaystyle \int ~ v ~ dx \right]~ dx\\\\\text{Let}, u =x~ \text{and}~ v=e^{3x}  .\\\\y=  \displaystyle \int xe^{3x} ~dx\\\\\\~~=  x\displaystyle \int e^{3x} ~ dx -  \displaystyle \int  \left[\dfrac{d}{dx}(x)  \displaystyle \int  e^{3x}~ dx \right]~ dx\\\\\\

  =x\displaystyle \int e^{3x}~ dx  - \displaystyle \dfrac 13 \int \left(e^{3x} \right)~ dx\\\\\\=\dfrac{xe^{3x}}3 - \dfrac 13 \cdot \dfrac{ e^{3x}}3+C\\\\\\= \dfrac{xe^{3x}}{3}- \dfrac{e^{3x}}{9}+C\\\\\\=\dfrac{3xe^{3x}}{9}- \dfrac{e^{3x}}9 + C\\\\\\= \dfrac 19e^{3x}(3x-1)+C

 

<h2 />
8 0
2 years ago
Driving through the mountains,Dale has to go up and over a high mountain pass. The road has a constant incline for 7 3/4 miles t
creativ13 [48]

Answer:

6510

Step-by-step explanation:

7.75 x 840 = 6510

8 0
3 years ago
Other questions:
  • f the centripetal and thus frictional force between the tires and the roadbed of a car moving in a circular path were reduced, w
    7·1 answer
  • Polygon ABCD reflects about line MN to make polygon EFGH. What is the length of FG?
    7·2 answers
  • I just need help at this point.
    7·2 answers
  • What exponents can you use to get to 625
    6·2 answers
  • Please use elimination<br> x+5y=-2<br> 2x + 5y = 6
    10·2 answers
  • Will give out Brainlyest
    10·2 answers
  • Please answer!! And will you explain why??
    12·1 answer
  • Is the triangle below a right triangle? if no, What type of triangle is it?
    13·2 answers
  • Can someone please answer my question Geometric Sequence:<br> 3, 6, 12, 24, …
    9·2 answers
  • Can some help me figure this out
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!