Step-by-step explanation:
× + 6 =4
x=4-6
x=-2
Hope it helps ☺️

Round to whichever place is needed
Yes, it is an equivalent expression because even though you move two pieces of an equation it will still equal the same thing, unless there are parentheses involved.
The function you seek to minimize is
()=3‾√4(3)2+(13−4)2
f
(
x
)
=
3
4
(
x
3
)
2
+
(
13
−
x
4
)
2
Then
′()=3‾√18−13−8=(3‾√18+18)−138
f
′
(
x
)
=
3
x
18
−
13
−
x
8
=
(
3
18
+
1
8
)
x
−
13
8
Note that ″()>0
f
″
(
x
)
>
0
so that the critical point at ′()=0
f
′
(
x
)
=
0
will be a minimum. The critical point is at
=1179+43‾√≈7.345m
x
=
117
9
+
4
3
≈
7.345
m
So that the amount used for the square will be 13−
13
−
x
, or
13−=524+33‾√≈5.655m
ANSWER
B. 1
EXPLANATION
The given function is

This is a piece-wise defined function.
We want to find f(1)
We substitute x=1 into f(x)=x because, 1 belongs to the interval,
1≤x≤5
f(1)=1
The correct answer is B.