1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex_Xolod [135]
2 years ago
5

Rationalise the denominator of 5/√(3-√5)Pls send the answer by today​

Mathematics
2 answers:
Maksim231197 [3]2 years ago
8 0

Answer:

\dfrac{5(3+\sqrt{5})\sqrt{3-\sqrt{5}}}{4}

\textsf{or}\quad \dfrac{5\sqrt{3+\sqrt{5}}}{2}

Step-by-step explanation:

\textsf{Given expression}:\dfrac{5}{\sqrt{3-\sqrt{5}}}

<u>Method 1</u>

\textsf{Multiply by the conjugate}\quad \dfrac{\sqrt{3-\sqrt{5}}}{\sqrt{3-\sqrt{5}}}:

\implies \dfrac{5}{\sqrt{3-\sqrt{5}}} \times \dfrac{\sqrt{3-\sqrt{5}}}{\sqrt{3-\sqrt{5}}}=\dfrac{5\sqrt{3-\sqrt{5}}}{(\sqrt{3-\sqrt{5}})(\sqrt{3-\sqrt{5}})}

Simplify the denominator using the radical rule \sqrt{a} \sqrt{a} =a:

\implies (\sqrt{3-\sqrt{5}})(\sqrt{3-\sqrt{5}})=3-\sqrt{5}

Therefore:

\implies \dfrac{5\sqrt{3-\sqrt{5}}}{(\sqrt{3-\sqrt{5}})(\sqrt{3-\sqrt{5}})}= \dfrac{5\sqrt{3-\sqrt{5}}}{3-\sqrt{5}}

\textsf{Multiply by the conjugate}\quad \dfrac{3+\sqrt{5}}{3+\sqrt{5}}:

\implies \dfrac{5\sqrt{3-\sqrt{5}}}{3-\sqrt{5}} \times \dfrac{3+\sqrt{5}}{3+\sqrt{5}}=\dfrac{5\sqrt{3-\sqrt{5}}(3+\sqrt{5})}{(3-\sqrt{5})(3+\sqrt{5})}

Simplify the denominator:

\implies (3-\sqrt{5})(3+\sqrt{5})=9+3\sqrt{5}-3\sqrt{5}-5=4

Therefore:

\implies \dfrac{5(3+\sqrt{5})\sqrt{3-\sqrt{5}}}{4}

<u>Method 2</u>

\textsf{Multiply by the conjugate}\quad \dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{3+\sqrt{5}}}:

\implies \dfrac{5}{\sqrt{3-\sqrt{5}}} \times \dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{3+\sqrt{5}}}=\dfrac{5\sqrt{3+\sqrt{5}}}{(\sqrt{3-\sqrt{5}})(\sqrt{3+\sqrt{5}})}

Simplify the denominator using the radical rule \sqrt{a} \sqrt{b} =\sqrt{ab}:

\implies (\sqrt{3-\sqrt{5}})(\sqrt{3+\sqrt{5}})=\sqrt{(3-\sqrt{5})(3+\sqrt{5})

\implies\sqrt{(3-\sqrt{5})(3+\sqrt{5})}=\sqrt{9-5}=\sqrt{4}=2

Therefore:

\implies \dfrac{5\sqrt{3+\sqrt{5}}}{2}

Hunter-Best [27]2 years ago
7 0

\huge\color{pink}\boxed{\colorbox{Black}{♔︎Answer♔︎}}

<u>To</u><u> </u><u>rationalise</u><u>:</u><u>-</u>

\frac{5}{ \sqrt{3 -  \sqrt{5} } }

There is a formula in math if there is root in denominator

for example

\frac{1}{ \sqrt{a - b} }

we can say rationalize by multiplying √(a-b) in numerator and denominator both

\frac{1}{ \sqrt{a - b} }  \times  \frac{ \sqrt{a - b} }{ \sqrt{a - b} }  \\  \frac{ \sqrt{a - b} }{a - b}

In here

\frac{5}{ \sqrt{3 -  \sqrt{5} } }  \times  \frac{ \sqrt{3 -  \sqrt{5} } }{ \sqrt{3 - { \sqrt{5} } } }  \\ \frac{5( \sqrt{3 -  \sqrt{5} }) }{3 -  \sqrt{5} }

but still here is root to remove this we have to multiply

3 + √5 in numerator and denominator.

\frac{5( \sqrt{3 -  \sqrt{5} }) }{3 -  \sqrt{5} }  \times  \frac{3  +   \sqrt{5} }{3 +  \sqrt{5} }  \\ \frac{5( \sqrt{3 -  \sqrt{5} })(3 +  \sqrt{5} ) }{ {3}^{2} -  { (\sqrt{5} )}^{2}  }  \\  \frac{5( \sqrt{3 -  \sqrt{5} })(3 +  \sqrt{5})  }{9 - 5}  \\  \frac{5( \sqrt{3 -  \sqrt{5} } )(3 +  \sqrt{5}) }{4}

You might be interested in
If (x + 2) is a factor of x2 - 6x2 + kx + 10, k =
Natali5045456 [20]

Answer:

10.7

Step-by-step explanation:

add multiple than subtract what you multiple and add a decimal

8 0
2 years ago
Grant walks 4/5 of a mile in 1/4 hour. What is his ratio of miles to hours in simplest form?
Sedbober [7]

Answer:

You can always ask the tutor they give the correct answer :))

8 0
2 years ago
Please I need help! I will mark you as brainliest!
Nadusha1986 [10]

Answer:

Step-by-step explanation:

SIDE OF THE SQUARE = 6 cm = DIAMETER OF THE CIRCLE.

AREA OF THE CIRCLE = (Pi/4)*6^2 = [(22/7)/4]*36 = 22*9/7 = 28.2857 sqcm

or

First, find the side length of the square. (Find the square root of 36 cm^2, to get 6 cm as the side length of the square).

Second, find the radius of the circle inside the square. The side length of the square is the diameter of the circle. Radius is half of the diameter. So, half of 6 cm is 3 cm; this is the radius of the circle.

Third, find the area of the circle by using the formula, A = pi x radius x radius

so, Area = 3.14 x 3 cm x 3 cm

by calculation we get the area of the circle is 28.26 cm^2

Where pi is a constant of 22/7 or 3.14

3 0
3 years ago
Read 2 more answers
Can a hermaphrodite have a baby with them self..............
pentagon [3]

no a hermaphrodite can not have a baby with themselves that is not possible

8 0
3 years ago
5 | 9 - 5n|-7 = 38<br> I need helppp.
DerKrebs [107]

Answer:

I got 0 or 18/5

Step-by-step explanation:

8 0
3 years ago
Other questions:
  • What is the volume of this cone in terms of pie?
    11·1 answer
  • HELPPPPPPPPPPPPPPPPPPPPPPPPPP PLZZZZZZZZZZZZZZZZZZzz
    7·2 answers
  • Plz Hurry I would Aprecate it
    7·1 answer
  • Find the mean, median and mode for the following data:
    7·2 answers
  • Divide 5x2 − 7x − 6 by x − 2.
    5·1 answer
  • Edmund makes a cube using eight small cubes.
    6·1 answer
  • In a normal​ distribution, which is​ greater, the mean or the​ median? Explain.
    9·2 answers
  • Use the information to answer the question.
    11·1 answer
  • What did you put for #3?
    10·1 answer
  • Charity is packing a 2-pounds container of trail mix into bags for a camping trip. Each bag holds 1/8 pound trail mix. If Charit
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!