1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex_Xolod [135]
2 years ago
5

Rationalise the denominator of 5/√(3-√5)Pls send the answer by today​

Mathematics
2 answers:
Maksim231197 [3]2 years ago
8 0

Answer:

\dfrac{5(3+\sqrt{5})\sqrt{3-\sqrt{5}}}{4}

\textsf{or}\quad \dfrac{5\sqrt{3+\sqrt{5}}}{2}

Step-by-step explanation:

\textsf{Given expression}:\dfrac{5}{\sqrt{3-\sqrt{5}}}

<u>Method 1</u>

\textsf{Multiply by the conjugate}\quad \dfrac{\sqrt{3-\sqrt{5}}}{\sqrt{3-\sqrt{5}}}:

\implies \dfrac{5}{\sqrt{3-\sqrt{5}}} \times \dfrac{\sqrt{3-\sqrt{5}}}{\sqrt{3-\sqrt{5}}}=\dfrac{5\sqrt{3-\sqrt{5}}}{(\sqrt{3-\sqrt{5}})(\sqrt{3-\sqrt{5}})}

Simplify the denominator using the radical rule \sqrt{a} \sqrt{a} =a:

\implies (\sqrt{3-\sqrt{5}})(\sqrt{3-\sqrt{5}})=3-\sqrt{5}

Therefore:

\implies \dfrac{5\sqrt{3-\sqrt{5}}}{(\sqrt{3-\sqrt{5}})(\sqrt{3-\sqrt{5}})}= \dfrac{5\sqrt{3-\sqrt{5}}}{3-\sqrt{5}}

\textsf{Multiply by the conjugate}\quad \dfrac{3+\sqrt{5}}{3+\sqrt{5}}:

\implies \dfrac{5\sqrt{3-\sqrt{5}}}{3-\sqrt{5}} \times \dfrac{3+\sqrt{5}}{3+\sqrt{5}}=\dfrac{5\sqrt{3-\sqrt{5}}(3+\sqrt{5})}{(3-\sqrt{5})(3+\sqrt{5})}

Simplify the denominator:

\implies (3-\sqrt{5})(3+\sqrt{5})=9+3\sqrt{5}-3\sqrt{5}-5=4

Therefore:

\implies \dfrac{5(3+\sqrt{5})\sqrt{3-\sqrt{5}}}{4}

<u>Method 2</u>

\textsf{Multiply by the conjugate}\quad \dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{3+\sqrt{5}}}:

\implies \dfrac{5}{\sqrt{3-\sqrt{5}}} \times \dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{3+\sqrt{5}}}=\dfrac{5\sqrt{3+\sqrt{5}}}{(\sqrt{3-\sqrt{5}})(\sqrt{3+\sqrt{5}})}

Simplify the denominator using the radical rule \sqrt{a} \sqrt{b} =\sqrt{ab}:

\implies (\sqrt{3-\sqrt{5}})(\sqrt{3+\sqrt{5}})=\sqrt{(3-\sqrt{5})(3+\sqrt{5})

\implies\sqrt{(3-\sqrt{5})(3+\sqrt{5})}=\sqrt{9-5}=\sqrt{4}=2

Therefore:

\implies \dfrac{5\sqrt{3+\sqrt{5}}}{2}

Hunter-Best [27]2 years ago
7 0

\huge\color{pink}\boxed{\colorbox{Black}{♔︎Answer♔︎}}

<u>To</u><u> </u><u>rationalise</u><u>:</u><u>-</u>

\frac{5}{ \sqrt{3 -  \sqrt{5} } }

There is a formula in math if there is root in denominator

for example

\frac{1}{ \sqrt{a - b} }

we can say rationalize by multiplying √(a-b) in numerator and denominator both

\frac{1}{ \sqrt{a - b} }  \times  \frac{ \sqrt{a - b} }{ \sqrt{a - b} }  \\  \frac{ \sqrt{a - b} }{a - b}

In here

\frac{5}{ \sqrt{3 -  \sqrt{5} } }  \times  \frac{ \sqrt{3 -  \sqrt{5} } }{ \sqrt{3 - { \sqrt{5} } } }  \\ \frac{5( \sqrt{3 -  \sqrt{5} }) }{3 -  \sqrt{5} }

but still here is root to remove this we have to multiply

3 + √5 in numerator and denominator.

\frac{5( \sqrt{3 -  \sqrt{5} }) }{3 -  \sqrt{5} }  \times  \frac{3  +   \sqrt{5} }{3 +  \sqrt{5} }  \\ \frac{5( \sqrt{3 -  \sqrt{5} })(3 +  \sqrt{5} ) }{ {3}^{2} -  { (\sqrt{5} )}^{2}  }  \\  \frac{5( \sqrt{3 -  \sqrt{5} })(3 +  \sqrt{5})  }{9 - 5}  \\  \frac{5( \sqrt{3 -  \sqrt{5} } )(3 +  \sqrt{5}) }{4}

You might be interested in
Factor out the coefficient of the variable 1/2q plus 5/2
Iteru [2.4K]
I believe you do it like this:
1/2 Q+5/2
divide 1/2 into each term
to divide multiply by the reciprocal
1/2 x2/1= 1
5/2 x 2/1=5

1/2(Q+5) 
8 0
3 years ago
Solve each of the following equations.
tamaranim1 [39]
A. -13
B. -45
C. 20
D. 84
E. 4
F. -4
G. -7
H. 48
6 0
4 years ago
Read 2 more answers
The ratio of berries to oranges is 10:1 if there are 25 oranges, how many berries are there?
Kryger [21]

Answer:

250 berries

Step-by-step explanation:

There are 10 berries to every orange there is. It is given that there are 25 oranges. Simply multiply 10 with 25:

10 x 25 = 250

There are 250 berries.

~

3 0
4 years ago
Read 2 more answers
The perimeter of a square is to be between 14 and 72 feet, inclusively. Find all possible values for the length of its sides. (&
xxMikexx [17]
We know that the perimeter is the all the sides added up together. Generally, you have p = 2l+2w, where l is length and w is width.

For a square, all sides are of the same length, so you can write p=4x, where x is any side.

If the smallest perimeter is 14, then 14 = 4x, so x is 3.5. If the largest perimeter is 72, then 72 = 4x, so x is 18.

Therefore, you have 3.5 ≤ x ≤ 18.
3 0
3 years ago
Find the 71st term of the following arithmetic sequence.<br><br>5, 13, 21, 29, ... ​
Lady bird [3.3K]

Answer:

7,120

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • The middle school is 2.72 kilometers from Marsha's house and 1.54 kilometers from Rayan's house. How much farther does Marsha li
    14·2 answers
  • I forgot how to do these questions<br> HELPPPPPP
    6·2 answers
  • Equivalent expression for 4(a+5) by modeling and using distributive property
    9·2 answers
  • What is the answer to this question and how do I get the answer
    9·1 answer
  • At the end of the year, a library reported 32 books lost or stolen, and 24 books were sent out for repair. If the library origin
    6·2 answers
  • Anyone please answer me ,<br> Please solve this question
    7·2 answers
  • The perimeter of a rectangle is 34 units. it's width is 6.5 units. Write an equation to determine the length of the rectangle
    5·1 answer
  • Write an equation of the perpendicular bisector of the segment with endpoints M(-3,4) and N(9,8).​
    11·1 answer
  • Mai made 6 cups pf vegetable soup and divided the soup equally among 8 containers. how much soup went in each container
    9·2 answers
  • Is this sequence arithmetic? -2.4,9.8,22,34.2...
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!