1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex_Xolod [135]
2 years ago
5

Rationalise the denominator of 5/√(3-√5)Pls send the answer by today​

Mathematics
2 answers:
Maksim231197 [3]2 years ago
8 0

Answer:

\dfrac{5(3+\sqrt{5})\sqrt{3-\sqrt{5}}}{4}

\textsf{or}\quad \dfrac{5\sqrt{3+\sqrt{5}}}{2}

Step-by-step explanation:

\textsf{Given expression}:\dfrac{5}{\sqrt{3-\sqrt{5}}}

<u>Method 1</u>

\textsf{Multiply by the conjugate}\quad \dfrac{\sqrt{3-\sqrt{5}}}{\sqrt{3-\sqrt{5}}}:

\implies \dfrac{5}{\sqrt{3-\sqrt{5}}} \times \dfrac{\sqrt{3-\sqrt{5}}}{\sqrt{3-\sqrt{5}}}=\dfrac{5\sqrt{3-\sqrt{5}}}{(\sqrt{3-\sqrt{5}})(\sqrt{3-\sqrt{5}})}

Simplify the denominator using the radical rule \sqrt{a} \sqrt{a} =a:

\implies (\sqrt{3-\sqrt{5}})(\sqrt{3-\sqrt{5}})=3-\sqrt{5}

Therefore:

\implies \dfrac{5\sqrt{3-\sqrt{5}}}{(\sqrt{3-\sqrt{5}})(\sqrt{3-\sqrt{5}})}= \dfrac{5\sqrt{3-\sqrt{5}}}{3-\sqrt{5}}

\textsf{Multiply by the conjugate}\quad \dfrac{3+\sqrt{5}}{3+\sqrt{5}}:

\implies \dfrac{5\sqrt{3-\sqrt{5}}}{3-\sqrt{5}} \times \dfrac{3+\sqrt{5}}{3+\sqrt{5}}=\dfrac{5\sqrt{3-\sqrt{5}}(3+\sqrt{5})}{(3-\sqrt{5})(3+\sqrt{5})}

Simplify the denominator:

\implies (3-\sqrt{5})(3+\sqrt{5})=9+3\sqrt{5}-3\sqrt{5}-5=4

Therefore:

\implies \dfrac{5(3+\sqrt{5})\sqrt{3-\sqrt{5}}}{4}

<u>Method 2</u>

\textsf{Multiply by the conjugate}\quad \dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{3+\sqrt{5}}}:

\implies \dfrac{5}{\sqrt{3-\sqrt{5}}} \times \dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{3+\sqrt{5}}}=\dfrac{5\sqrt{3+\sqrt{5}}}{(\sqrt{3-\sqrt{5}})(\sqrt{3+\sqrt{5}})}

Simplify the denominator using the radical rule \sqrt{a} \sqrt{b} =\sqrt{ab}:

\implies (\sqrt{3-\sqrt{5}})(\sqrt{3+\sqrt{5}})=\sqrt{(3-\sqrt{5})(3+\sqrt{5})

\implies\sqrt{(3-\sqrt{5})(3+\sqrt{5})}=\sqrt{9-5}=\sqrt{4}=2

Therefore:

\implies \dfrac{5\sqrt{3+\sqrt{5}}}{2}

Hunter-Best [27]2 years ago
7 0

\huge\color{pink}\boxed{\colorbox{Black}{♔︎Answer♔︎}}

<u>To</u><u> </u><u>rationalise</u><u>:</u><u>-</u>

\frac{5}{ \sqrt{3 -  \sqrt{5} } }

There is a formula in math if there is root in denominator

for example

\frac{1}{ \sqrt{a - b} }

we can say rationalize by multiplying √(a-b) in numerator and denominator both

\frac{1}{ \sqrt{a - b} }  \times  \frac{ \sqrt{a - b} }{ \sqrt{a - b} }  \\  \frac{ \sqrt{a - b} }{a - b}

In here

\frac{5}{ \sqrt{3 -  \sqrt{5} } }  \times  \frac{ \sqrt{3 -  \sqrt{5} } }{ \sqrt{3 - { \sqrt{5} } } }  \\ \frac{5( \sqrt{3 -  \sqrt{5} }) }{3 -  \sqrt{5} }

but still here is root to remove this we have to multiply

3 + √5 in numerator and denominator.

\frac{5( \sqrt{3 -  \sqrt{5} }) }{3 -  \sqrt{5} }  \times  \frac{3  +   \sqrt{5} }{3 +  \sqrt{5} }  \\ \frac{5( \sqrt{3 -  \sqrt{5} })(3 +  \sqrt{5} ) }{ {3}^{2} -  { (\sqrt{5} )}^{2}  }  \\  \frac{5( \sqrt{3 -  \sqrt{5} })(3 +  \sqrt{5})  }{9 - 5}  \\  \frac{5( \sqrt{3 -  \sqrt{5} } )(3 +  \sqrt{5}) }{4}

You might be interested in
Someone help me with these two. I'll give you brainliest and 25 points!! MATHEMATICIANS OUT THERE HELP
mixer [17]
Hello LovingAngel!

To find the slope, you can use the formulas \frac{rise}{run} as well as \frac{y^2-y^1}{x^2 - x^1}. I am using the latter to calculate and ensuring my answer with the former. 

[Note: (x,y) is the format for ordered pairs]

First pair:  value 1:(1,5) and value 2:(2,8) 
\frac{y^2-y^1}{x^2 - x^1} -> \frac{8 - 5}{2 - 1} -> \frac{3}{1} or 3. 

The slope for (1,5) and (2,8) is 3(/1). 

Second pair: value 1: (3,1) value 2 (3,-1)

\frac{y^2-y^1}{x^2 - x^1} -> \frac{-1 - 1}{3 - 3} -> \frac{-2}{0}
Slope for the second pair is -2/0

Checking work with \frac{rise}{run}
1. Slope: 3/1, meaning rise (y) +3 and run (x) +1.  (1,5) -> (1+1,5 + 3) -> (2,8) ✔
2. Slope: -2/0, meaning rise (y) -2/drop (y) 2 and run 0. (3,1) -> (3 + 0, 1 + -2) -> (3,-1) <span>✔</span>

6 0
3 years ago
Ellus
butalik [34]

9514 1404 393

Answer:

  2.25

Step-by-step explanation:

Add the square of half the x-coefficient to complete the square.

  (-3/2)² = 9/4 = 2.25

4 0
3 years ago
a species of cicada has a life cycle of 17 years a parasite that harms the cicada has a life cycle of 4 years if the last known
irga5000 [103]

Answer:

What grade are you in.  and let me see the choices

Step-by-step explanation:

3 0
3 years ago
What is the answer to this question
matrenka [14]
The answer would be D.
7 0
3 years ago
Consider the quadratic function Y= -(x-3)^2+4
wlad13 [49]

Answer:

-(x^2-2*x*3+3^2)+4=-x^2+6x-9+4=x^2+6x-5

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • Huilan is 15 years younger than Thomas. The sum of their ages is 33 . What is Thomas's age?
    11·1 answer
  • 2 (t+5) &gt; 4t-7 (t+3)
    12·2 answers
  • Can someone help me with this???​
    10·1 answer
  • !NO LINKS, NO FILES!<br><br> please :)
    6·2 answers
  • I need this question in order to finish! Please help
    8·1 answer
  • More slope pls helpppppp
    9·2 answers
  • Evaluate 1/3 divided by 1/2
    5·2 answers
  • What's 86/8 in a mixed number
    7·1 answer
  • Andrew earns 10 points for every word she spells correctly on a quiz. Which equation can be used to find p, the total number of
    7·2 answers
  • The graph shows Ms. Padilla's monthly cell phone cost, where x is the number of minutes she uses the phone during the month.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!