Answer:
4.
°
Step-by-step explanation:
Given:
The tangent of the angle is given as:

Since the angle is negative, it means that it is measured in the clockwise direction as angles measured in clockwise direction are negative and that measured in counter clockwise directions are positive.
-212° when measured from counter clockwise direction will be equal to:

Therefore,
= 
Now, we have the identity for tan as:

Here, 
Therefore,

Hence,
=
=
°
In order to find the answer, you can use-
1/4x=6
In order to get the answer, you multiply 6 by the denominator.
6x4=24
Then, you'd divide the solution of that part by the numerator.
24 divided by 1 equals 24.
Therefore, the final answer would be 24.
B is the correct answer to this question
Answer:
x = 14
Step-by-step explanation:
Assume your diagram is like the one below.
The intersecting secant angles theorem states, "When two secants intersect outside a circle, the measure of the angle formed is one-half the difference between the far and the near arcs."
For your diagram, that means
![\begin{array}{rcl}m\angle L &=&\dfrac{1}{2} \left(m \widehat {JM} - m\widehat {PQ}\right)\\\\(3x + 13)^{\circ}& = &\dfrac{1}{2} \left[(8x + 48)^{\circ} - (5x - 20)^{\circ}\right]\\\\3x + 13& = &\dfrac{1}{2}(8x + 48 - 5x + 20)\\\\3x + 13& = &\dfrac{1}{2}(3x + 68)\\\\6x + 26 & = & 3x + 68\\6x & = & 3x + 42\\3x & = & 42\\x & = & \mathbf{14}\\\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcl%7Dm%5Cangle%20L%20%26%3D%26%5Cdfrac%7B1%7D%7B2%7D%20%5Cleft%28m%20%5Cwidehat%20%7BJM%7D%20-%20m%5Cwidehat%20%7BPQ%7D%5Cright%29%5C%5C%5C%5C%283x%20%2B%2013%29%5E%7B%5Ccirc%7D%26%20%3D%20%26%5Cdfrac%7B1%7D%7B2%7D%20%5Cleft%5B%288x%20%2B%2048%29%5E%7B%5Ccirc%7D%20-%20%285x%20-%2020%29%5E%7B%5Ccirc%7D%5Cright%5D%5C%5C%5C%5C3x%20%2B%2013%26%20%3D%20%26%5Cdfrac%7B1%7D%7B2%7D%288x%20%2B%2048%20-%205x%20%2B%2020%29%5C%5C%5C%5C3x%20%2B%2013%26%20%3D%20%26%5Cdfrac%7B1%7D%7B2%7D%283x%20%2B%2068%29%5C%5C%5C%5C6x%20%2B%2026%20%26%20%3D%20%26%203x%20%2B%2068%5C%5C6x%20%26%20%3D%20%26%203x%20%2B%2042%5C%5C3x%20%26%20%3D%20%26%2042%5C%5Cx%20%26%20%3D%20%26%20%5Cmathbf%7B14%7D%5C%5C%5Cend%7Barray%7D)
Check:
![\begin{array}{rcl}(3\times14 + 13) & = &\dfrac{1}{2} \left[(8\times14 + 48)^{\circ} - (5\times14 - 20)^{\circ}\right]\\\\42 + 13& = &\dfrac{1}{2}(112 + 48 - 70 + 20)\\\\55& = &\dfrac{1}{2}(110)\\\\55 & = & 55\\\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcl%7D%283%5Ctimes14%20%2B%2013%29%20%26%20%3D%20%26%5Cdfrac%7B1%7D%7B2%7D%20%5Cleft%5B%288%5Ctimes14%20%2B%2048%29%5E%7B%5Ccirc%7D%20-%20%285%5Ctimes14%20-%2020%29%5E%7B%5Ccirc%7D%5Cright%5D%5C%5C%5C%5C42%20%2B%2013%26%20%3D%20%26%5Cdfrac%7B1%7D%7B2%7D%28112%20%2B%2048%20-%2070%20%2B%2020%29%5C%5C%5C%5C55%26%20%3D%20%26%5Cdfrac%7B1%7D%7B2%7D%28110%29%5C%5C%5C%5C55%20%26%20%3D%20%26%2055%5C%5C%5Cend%7Barray%7D)
It checks.