Your correct answer is (B) Ratio of neutrons to protons
Hope this helps! :)
D. dishwashing Soap/Liquid
The given question is incomplete. The complete question is as follows.
Which of the following best helps explain why an increase in temperature increases the rate of a chemical reaction?
(a) at higher temperatures, high-energy collisions happen less frequently.
(b) at low temperatures, low-energy collisions happen more frequently.
(c) at higher temperatures, less-energy collisions happen less frequently.
(d) at higher temperatures, high-energy collisions happen more frequently
Explanation:
When we increase the temperature of a chemical reaction then molecules of the reactant species tend to gain kinetic energy. As a result, they come into motion which leads to more number of collisions within the molecules.
Therefore, chemical reaction will take less amount of time in order to reach its end point. This means that there will occur an increase in rate of reaction.
Thus, we can conclude that the statement at higher temperatures, high-energy collisions happen more frequently, best explains why an increase in temperature increases the rate of a chemical reaction.
Answer:
The answer is b
Explanation:
they both are decomposition
Answer:
a) ΔGº= -49,9 KJ/mol = - 50 KJ/mol
b) The reaction goes to the right to formation of products
c) ΔG= 84,42 KJ/mol. The direction is to reactive, to the left
Explanation:
a) ΔGº= - RTLnKf
You need to convert Cº to K. 25ºC=298K
Then, ΔGº= - 3,814 J/molK * 298K* Ln(5.6 *10^8)= - 49906 J/mol = -49,9 KJ/mol = - 50 KJ/mol
b) The ΔGº < 0, that means the direct reaction is spontaneous when te reactive and products are in standard state. In other words the reaction goes to the right, to formation of products
c) The general ecuation for chemical reaction is aA + bB → cD + dD. Thus
ΔG=ΔGº + RTLn (([C]^c*[D]^d)/[A]^a*[B]^b)
In this case,
ΔG=ΔGº + RTLn ([Ni(NH3)62+] / [Ni2+]*[NH3]^6 )= 84417 J/mol =84,42 KJ/mol
ΔG >0 means the reaction isn't spontaneous in the direction of the products. Therefore the direction is to reactive, to the left