Answer:
B. It was necessary that each of the two phage components, DNA and protein, be identifiable upon recovery at the end of the experiment.
Explanation:
Hershey and Martha Chase used radiolabeled the DNA of some of the bacteriophage cells with phosphorus (32P). They radiolabeled the sulfur (35S) of the coat protein in the second batch of the phage cells. They infected some of the bacterial cells with phage having radiolabeled DNA while the other <em>E. coli</em> cells were infected with the phage carrying radiolabeled coat protein. This allowed the clear identification of the radiolabelled molecule (DNA or protein) present in the host cell.
They observed that the <em>E. coli </em>cells infected with phage having radiolabeled DNA exhibited the radioactivity while the other batch of the host cell did not show it.
The last option because it's like the earth
This is a typical case of a dihybrid cross.
From the phenotype of the offspring, we can conclude that the gene for the red color of the flower and the gene for the axial position of the flower are dominant.
Since we know that the ratio of phenotypes in a dihybrid cross of independently inherited alleles is
9(dominant for both traits)
3(dominant for one trait, recessive for the other)
3(dominant for the second trait, recessive for the other)
1(recessive for both traits)
we can expect 3/16 of the f2 generation to be dominamt for one trait and recessive for the other (red, terminal flowers), or to be precise 190 individuals.
Answer:
Mutations can be caused by radiation
if my answer helps you than mark me as brainliest.
Answer:
Green peas if it does not have a dominant allele for yellow peas.
Explanation:
In pea plants, yellow is the dominant allele color of peas and green is the recessive allele color of the pea. So the genotype that makes yellow color pea is YY or Yy and the genotype that is responsible for producing green color pea is only YY.
This shows that homozygous dominant or heterozygous dominant condition gives rise to yellow color pea and only homozygous recessive condition would give rise to green color pea plants.
Therefore if a pea plant has the recessive allele for green peas it will produce green peas if it does not have a dominant allele for yellow peas.