Using an exponential function, it is found that there will be only 3 milligrams remaining in the patient's system after 201 minutes.
<h3>What is an exponential function?</h3>
A decaying exponential function is modeled by:
![A(t) = A(0)(1 - r)^t](https://tex.z-dn.net/?f=A%28t%29%20%3D%20A%280%29%281%20-%20r%29%5Et)
In which:
- A(0) is the initial value.
- r is the decay rate, as a decimal.
In this problem, initially, there are 11 milligrams on the patient's system, hence A(0) = 11. After 70 minutes there are 7 milligrams, hence A(70) = 7, and this is used to find r.
![A(t) = A(0)(1 - r)^t](https://tex.z-dn.net/?f=A%28t%29%20%3D%20A%280%29%281%20-%20r%29%5Et)
![7 = 11(1 - r)^{70}](https://tex.z-dn.net/?f=7%20%3D%2011%281%20-%20r%29%5E%7B70%7D)
![(1 - r)^{70} = \frac{7}{11}](https://tex.z-dn.net/?f=%281%20-%20r%29%5E%7B70%7D%20%3D%20%5Cfrac%7B7%7D%7B11%7D)
![\sqrt[70]{(1 - r)^{70}} = \sqrt[70]{\frac{7}{11}}](https://tex.z-dn.net/?f=%5Csqrt%5B70%5D%7B%281%20-%20r%29%5E%7B70%7D%7D%20%3D%20%5Csqrt%5B70%5D%7B%5Cfrac%7B7%7D%7B11%7D%7D)
![1 - r = \left(\frac{7}{11}\right)^\frac{1}{70}](https://tex.z-dn.net/?f=1%20-%20r%20%3D%20%5Cleft%28%5Cfrac%7B7%7D%7B11%7D%5Cright%29%5E%5Cfrac%7B1%7D%7B70%7D)
1 - r = 0.99356387084
r = 1 - 0.99356387084
r = 0.00643612916
Hence the equation for the amount after t minutes is:
![A(t) = 11(0.99356387084)^t](https://tex.z-dn.net/?f=A%28t%29%20%3D%2011%280.99356387084%29%5Et)
In will be of 3 mg when A(t) = 3, hence:
![A(t) = 11(0.99356387084)^t](https://tex.z-dn.net/?f=A%28t%29%20%3D%2011%280.99356387084%29%5Et)
![3 = 11(0.99356387084)^t](https://tex.z-dn.net/?f=3%20%3D%2011%280.99356387084%29%5Et)
![(0.99356387084)^t = \frac{3}{11}](https://tex.z-dn.net/?f=%280.99356387084%29%5Et%20%3D%20%5Cfrac%7B3%7D%7B11%7D)
![\log{(0.99356387084)^t} = \log{\left(\frac{3}{11}\right)}](https://tex.z-dn.net/?f=%5Clog%7B%280.99356387084%29%5Et%7D%20%3D%20%5Clog%7B%5Cleft%28%5Cfrac%7B3%7D%7B11%7D%5Cright%29%7D)
![t\log{(0.99356387084)} = \log{\left(\frac{3}{11}\right)}](https://tex.z-dn.net/?f=t%5Clog%7B%280.99356387084%29%7D%20%3D%20%5Clog%7B%5Cleft%28%5Cfrac%7B3%7D%7B11%7D%5Cright%29%7D)
![t = \frac{\log{\left(\frac{3}{11}\right)}}{\log{(0.99356387084)}}](https://tex.z-dn.net/?f=t%20%3D%20%5Cfrac%7B%5Clog%7B%5Cleft%28%5Cfrac%7B3%7D%7B11%7D%5Cright%29%7D%7D%7B%5Clog%7B%280.99356387084%29%7D%7D)
t = 201
There will be only 3 milligrams remaining in the patient's system after 201 minutes.
More can be learned about exponential functions at brainly.com/question/25537936