A frequency distribution table displays the frequency of each data element in the dataset.
- <em>The sample mean is 37.81 </em>
- <em>The sample standard deviation is 22.02</em>
<em />
The dataset is given as:
![\left[\begin{array}{cc}Years & Frequency &Under\ 4& 21.5 & 5-14 & 39.9 &15-19 & 20.3 & 20-24 & 22.3 & 25-34 & 48.4 &35-44 & 37.8 & 45-64 & 75.7 & 65 - over & 54.3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7DYears%20%26%20Frequency%20%26Under%5C%204%26%2021.5%20%26%205-14%20%26%2039.9%20%2615-19%20%26%2020.3%20%26%2020-24%20%26%2022.3%20%26%2025-34%20%26%2048.4%20%2635-44%20%26%2037.8%20%26%2045-64%20%26%2075.7%20%26%2065%20-%20over%20%26%2054.3%5Cend%7Barray%7D%5Cright%5D)
<u>(a) The frequency distribution table</u>
The frequency distribution table should include, the years, the frequency, and the class midpoint (x)
The class midpoint is the average of each class
For instance;
The midpoint of under 4 is:

The midpoint of 5-14 is:

And so on.....
So, we have:
![\left[\begin{array}{ccc}Years & Frequency & x & Under\ 4& 21.5 & 2 & 5-14 & 39.9&9.5 &15-19 & 20.3&17 & 20-24 & 22.3 & 22 & 25-34 & 48.4& 29.5 &35-44 & 37.8& 39.5 & 45-64 & 75.7 & 54.5 & 65 - over & 54.3 & 70\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7DYears%20%26%20Frequency%20%26%20x%20%26%20Under%5C%204%26%2021.5%20%26%202%20%26%205-14%20%26%2039.9%269.5%20%2615-19%20%26%2020.3%2617%20%26%2020-24%20%26%2022.3%20%26%2022%20%26%2025-34%20%26%2048.4%26%2029.5%20%2635-44%20%26%2037.8%26%2039.5%20%26%2045-64%20%26%2075.7%20%26%2054.5%20%26%2065%20-%20over%20%26%2054.3%20%26%2070%5Cend%7Barray%7D%5Cright%5D)
<u>(b) Sample mean and Sample standard deviation</u>
The sample mean is calculated using:

So, we have:



The sample standard deviation is calculated using:

So, we have:




Hence, the sample mean and the sample standard deviation are 37.81 and 22.02, respectively.
Read more about frequency distribution table at:
brainly.com/question/12385304