The value of the function is 4 when x=3.
let's multiply both sides in each equation by the LCD of all fractions in it, thus doing away with the denominator.
![\begin{cases} \cfrac{1}{2}x+\cfrac{1}{3}y&=7\\\\ \cfrac{1}{4}x+\cfrac{2}{3}y&=6 \end{cases}\implies \begin{cases} \stackrel{\textit{multiplying both sides by }\stackrel{LCD}{6}}{6\left( \cfrac{1}{2}x+\cfrac{1}{3}y \right)=6(7)}\\\\ \stackrel{\textit{multiplying both sides by }\stackrel{LCD}{12}}{12\left( \cfrac{1}{4}x+\cfrac{2}{3}y\right)=12(6)} \end{cases}\implies \begin{cases} 3x+2y=42\\ 3x+8y=72 \end{cases} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20%5Ccfrac%7B1%7D%7B2%7Dx%2B%5Ccfrac%7B1%7D%7B3%7Dy%26%3D7%5C%5C%5C%5C%20%5Ccfrac%7B1%7D%7B4%7Dx%2B%5Ccfrac%7B2%7D%7B3%7Dy%26%3D6%20%5Cend%7Bcases%7D%5Cimplies%20%5Cbegin%7Bcases%7D%20%5Cstackrel%7B%5Ctextit%7Bmultiplying%20both%20sides%20by%20%7D%5Cstackrel%7BLCD%7D%7B6%7D%7D%7B6%5Cleft%28%20%5Ccfrac%7B1%7D%7B2%7Dx%2B%5Ccfrac%7B1%7D%7B3%7Dy%20%5Cright%29%3D6%287%29%7D%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bmultiplying%20both%20sides%20by%20%7D%5Cstackrel%7BLCD%7D%7B12%7D%7D%7B12%5Cleft%28%20%5Ccfrac%7B1%7D%7B4%7Dx%2B%5Ccfrac%7B2%7D%7B3%7Dy%5Cright%29%3D12%286%29%7D%20%5Cend%7Bcases%7D%5Cimplies%20%5Cbegin%7Bcases%7D%203x%2B2y%3D42%5C%5C%203x%2B8y%3D72%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \stackrel{\textit{using elimination}}{ \begin{array}{llll} 3x+2y=42&\times -1\implies &\begin{matrix} -3x \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~-2y=&-42\\ 3x+8y-72 &&~~\begin{matrix} 3x \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~+8y=&72\\ \cline{3-4}\\ &&~\hfill 6y=&30 \end{array}} \\\\\\ y=\cfrac{30}{6}\implies \blacktriangleright y=5 \blacktriangleleft \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Busing%20elimination%7D%7D%7B%20%5Cbegin%7Barray%7D%7Bllll%7D%203x%2B2y%3D42%26%5Ctimes%20-1%5Cimplies%20%26%5Cbegin%7Bmatrix%7D%20-3x%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~-2y%3D%26-42%5C%5C%203x%2B8y-72%20%26%26~~%5Cbegin%7Bmatrix%7D%203x%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%2B8y%3D%2672%5C%5C%20%5Ccline%7B3-4%7D%5C%5C%20%26%26~%5Chfill%206y%3D%2630%20%5Cend%7Barray%7D%7D%20%5C%5C%5C%5C%5C%5C%20y%3D%5Ccfrac%7B30%7D%7B6%7D%5Cimplies%20%5Cblacktriangleright%20y%3D5%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \stackrel{\textit{substituting \underline{y} on the 1st equation}~\hfill }{3x+2(5)=42\implies 3x+10=42}\implies 3x=32 \\\\\\ x=\cfrac{32}{3}\implies \blacktriangleright x=10\frac{2}{3} \blacktriangleleft \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \left(10\frac{2}{3}~~,~~5 \right)~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Bsubstituting%20%5Cunderline%7By%7D%20on%20the%201st%20equation%7D~%5Chfill%20%7D%7B3x%2B2%285%29%3D42%5Cimplies%203x%2B10%3D42%7D%5Cimplies%203x%3D32%20%5C%5C%5C%5C%5C%5C%20x%3D%5Ccfrac%7B32%7D%7B3%7D%5Cimplies%20%5Cblacktriangleright%20x%3D10%5Cfrac%7B2%7D%7B3%7D%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20%5Cleft%2810%5Cfrac%7B2%7D%7B3%7D~~%2C~~5%20%5Cright%29~%5Chfill)
Answer:
8X5=40
Step-by-step explanation:
First, find the number of inches
<span>1225 Miles = 77616000 Inches
then, move the decimal to until you have a ones place. </span>
<span>77616000. the decimal for this number moves to the left SEVEN places.
you end up with 7.7616000
</span>
it will look like this:
7.8 * 10^7
I rounded to the .8 because you didn't state how many significant figures, but it could easily be 7.76 * 10^7
the exponent above the 10 will tell you how many places to move. to get back to your original number, move it back to the right seven places. Of course, you would have to place hold the numbers with 0s. If it were negative, you would move the decimal the opposite way.
To find three equivalent fractions of a fraction, simply multiply the fraction by a common factor.
For example, multiple both the numerator and denominator of 9/7 by 2.
This will give you a fraction of 18/14, which is equivalent.
You can do this with any number you like to create three equivalent fractions.