Answer:
5.44 cm³
Step-by-step explanation:
The volume of the hexagonal nut can be found by multiplying the area of the end face by the length of the nut. The end face area is the difference between the area of the hexagon and the area of the hole.
The area of a hexagon with side length s is given by ...
A = (3/2)√3·s²
For s=1 cm, the area is ...
A = (3/2)√3(1 cm)² = (3/2)√3 cm²
__
The area of a circle is given by ...
A = πr²
The radius of a circle with diameter 1 cm is 0.5 cm. Then the area of the hole is ...
A = π(0.5 cm)² = 0.25π cm²
__
The volume is the face area multiplied by the length, so is ...
V = Bh = ((3/2)√3 -0.25π)(3) . . . . . cm³
V = (9/2)√3 -0.75π cm³ ≈ 5.44 cm³
The volume of the metal is about 5.44 cm³.
Answer:
Part a) The measure of the missing angle is 
Part b) The triangle of the figure is a right triangle
Part c) The triangle of the figure is a scalene triangle
Step-by-step explanation:
we know that
The sum of the interior angles of a triangle is equal to 
so
Let
x------> the missing angle
we know that

solve for x

The triangle of the figure is a right triangle --------> by its angles
Because the triangle has an angle measure of 
The triangle of the figure is a scalene triangle --------> by its sides
Because the three angles and the three sides measures are different
Actually, when you know 2 sides and an included angle, you use the Law of Cosines. (and we don't know if theta is an included angle).
Solving for side c
c^2 = a^2 + b^2 -2ab * cos(C)
c^2 = 36 + 16 - 2*6*4 * cos(60)
c^2 = 52 -48*.5
c^2 = 28
c = 5.2915
Using the Law of Sines
side c / sin(C) = side b / sin (B)
5.2915 / sin(60) = 4 / sin (B)
sin(B) = sin(60) * 4 / 5.2915
sin(B) = 0.86603 * 4 / 5.2915
<span><span>sin(B) = 3.46412
</span>
/ 5.2915
</span>
<span><span><span>sin(B) = 0.6546571451
</span>
</span>
</span>
Angle B = 40.894 Degrees
sin (A) / side a = sin (B) / side b
sin (A) = 6 * sin (40.894) / 4
sin (A) = 6 * 0.65466 / 4
sin (A) = .98199
angle A = 79.109 Degrees
angle C = 60 Degrees
Answer:
sure
Step-by-step explanation: