1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
CaHeK987 [17]
3 years ago
11

Find the slope and y-intercept of the line.

Mathematics
2 answers:
krok68 [10]3 years ago
7 0

Answer:

A

Step-by-step explanation:

According to the given equation

y=(7/4)x-10

Comparing it with the standard form

y=mx+c

Where m is slope and c is y-intercept

We get

Slope=7/4 ; y-intercept=-10

shusha [124]3 years ago
4 0

Answer:

The slope would be the gradient of the line and hence by comparison with the equation form y=mx+c where m is the gradient, the gradient of the line in the question would be 7/4.

The y intercept of the line would be where x=0. When x=0, the y intercept is thus -10.

Hence the answer is the first option

You might be interested in
3w-4z=8
Nezavi [6.7K]
W=0
Z=-2
Is there a need for explanation?
8 0
3 years ago
How to divide integers
Elan Coil [88]
The quotient of two positive integers or two negative integers is positive. The quotient of a positive integer and a negative is negative. Hope you understand how to divide integers now.

4 0
4 years ago
Read 2 more answers
A(1) = -11<br> a(n) = a(n − 1). 10<br> What is the 4th term in the sequence?
neonofarm [45]

Answer:

a(n)= a(n-1) .10

Clearly see the equation

you can do it directly Apply logic

Every n th term is 10 times of previous n-1 th term

That is common ratio an/a(n-1)= 10

So, We have to find 4 th term

So, 4 th term is simply

1st term × (common ratio)^(4-1)

-11( 10)^3

-11000

Thanks

3 0
3 years ago
Simplify 4+1/2(24)=x^2
olga nikolaevna [1]
Answer x1 =-4 and x2=4

7 0
3 years ago
Read 2 more answers
Solve the equation in the interval [0,2π]. If there is more than one solution write them separated by commas.
Sedaia [141]
\large\begin{array}{l} \textsf{Solve the equation for x:}\\\\ &#10;\mathsf{(tan\,x)^2+2\,tan\,x-4.76=0}\\\\\\ \textsf{Substitute}\\\\ &#10;\mathsf{tan\,x=t\qquad(t\in \mathbb{R})}\\\\\\ \textsf{so the equation &#10;becomes}\\\\ \mathsf{t^2+2t-4.76=0}\quad\Rightarrow\quad\begin{cases} &#10;\mathsf{a=1}\\\mathsf{b=2}\\\mathsf{c=-4.76} \end{cases} &#10;\end{array}


\large\begin{array}{l} \textsf{Using &#10;the quadratic formula:}\\\\ \mathsf{\Delta=b^2-4ac}\\\\ &#10;\mathsf{\Delta=2^2-4\cdot 1\cdot (-4.76)}\\\\ &#10;\mathsf{\Delta=4+19.04}\\\\ \mathsf{\Delta=23.04}\\\\ &#10;\mathsf{\Delta=\dfrac{2\,304}{100}}\\\\ &#10;\mathsf{\Delta=\dfrac{\diagup\!\!\!\! 4\cdot 576}{\diagup\!\!\!\! 4\cdot&#10; 25}}\\\\ \mathsf{\Delta=\dfrac{24^2}{5^2}} \end{array}

\large\begin{array}{l}&#10; \mathsf{\Delta=\left(\dfrac{24}{5}\right)^{\!2}}\\\\ &#10;\mathsf{\Delta=(4.8)^2}\\\\\\ &#10;\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\ &#10;\mathsf{t=\dfrac{-2\pm\sqrt{(4.8)^2}}{2\cdot 1}}\\\\ &#10;\mathsf{t=\dfrac{-2\pm 4.8}{2}}\\\\ \mathsf{t=\dfrac{\diagup\!\!\!\! &#10;2\cdot (-1\pm 2.4)}{\diagup\!\!\!\! 2}}\\\\\mathsf{t=-1\pm 2.4} &#10;\end{array}

\large\begin{array}{l} \begin{array}{rcl} &#10;\mathsf{t=-1-2.4}&~\textsf{ or }~&\mathsf{t=-1+2.4}\\\\ &#10;\mathsf{t=-3.4}&~\textsf{ or }~&\mathsf{t=1.4} \end{array} &#10;\end{array}


\large\begin{array}{l} \textsf{Both &#10;are valid values for t. Substitute back for }\mathsf{t=tan\,x:}\\\\ &#10;\begin{array}{rcl} \mathsf{tan\,x=-3.4}&~\textsf{ or &#10;}~&\mathsf{tan\,x=1.4} \end{array}\\\\\\ \textsf{Take the inverse &#10;tangent function:}\\\\ \begin{array}{rcl} &#10;\mathsf{x=tan^{-1}(-3.4)+k\cdot \pi}&~\textsf{ or &#10;}~&\mathsf{x=tan^{-1}(1.4)+k\cdot \pi}\\\\ &#10;\mathsf{x=-tan^{-1}(3.4)+k\cdot \pi}&~\textsf{ or &#10;}~&\mathsf{x=tan^{-1}(1.4)+k\cdot \pi} \end{array}\\\\\\ &#10;\textsf{where k in an integer.} \end{array}

__________


\large\begin{array}{l}&#10; \textsf{Now, restrict x values to the interval &#10;}\mathsf{[0,\,2\pi]:}\\\\ \bullet~~\textsf{For }\mathsf{k=0:}\\\\ &#10;\begin{array}{rcl} &#10;\mathsf{x=-tan^{-1}(3.4)


\large\begin{array}{l}&#10; \bullet~~\textsf{For }\mathsf{k=1:}\\\\ \begin{array}{rcl} &#10;\mathsf{x=-tan^{-1}(3.4)+\pi}&~\textsf{ or &#10;}~&\mathsf{x=tan^{-1}(1.4)+\pi} \end{array}\\\\\\ &#10;\boxed{\begin{array}{c}\mathsf{x=-tan^{-1}(3.4)+\pi} &#10;\end{array}}\textsf{ is in the 2}^{\mathsf{nd}}\textsf{ quadrant.}\\\\ &#10;\mathsf{x\approx 1.86~rad~~(106.39^\circ)}\\\\\\ &#10;\boxed{\begin{array}{c}\mathsf{x=tan^{-1}(1.4)+\pi} \end{array}}\textsf{&#10; is in the 3}^{\mathsf{rd}}\textsf{ quadrant.}\\\\ \mathsf{x\approx &#10;4.09~rad~~(234.46^\circ)}\\\\\\ \end{array}


\large\begin{array}{l}&#10; \bullet~~\textsf{For }\mathsf{k=2:}\\\\ \begin{array}{rcl} &#10;\mathsf{x=-tan^{-1}(3.4)+2\pi}&~\textsf{ or &#10;}~&\mathsf{x=tan^{-1}(1.4)+2\pi>2\pi~~\textsf{(discard)}} &#10;\end{array}\\\\\\ \boxed{\begin{array}{c}\mathsf{x=-tan^{-1}(3.4)+2\pi} &#10;\end{array}}\textsf{ is in the 4}^{\mathsf{th}}\textsf{ quadrant.}\\\\ &#10;\mathsf{x\approx 5.00~rad~~(286.39^\circ)} \end{array}


\large\begin{array}{l}&#10; \textsf{Solution set:}\\\\ &#10;\mathsf{S=\left\{tan^{-1}(1.4);\,-tan^{-1}(3.4)+\pi;\,tan^{-1}(1.4)+\pi;\,-tan^{-1}(3.4)+2\pi\right\}}&#10; \end{array}


<span>If you're having problems understanding this answer, try seeing it through your browser: brainly.com/question/2071152</span>


\large\textsf{I hope it helps.}


Tags: <em>trigonometric trig quadratic equation tangent tan solve inverse symmetry parity odd function</em>

6 0
3 years ago
Other questions:
  • In the 2010 Winter Olympics, the American speed skater Apolo Ohno won the silver medal in the 1,500 meter race. How many kilomet
    14·2 answers
  • Do even numbers have more factors in odd numbers or do i numbers have more factors than even numbers
    11·1 answer
  • A ceiling fan has
    9·1 answer
  • (7.99 x 10 to the 4th)
    14·2 answers
  • 15 x -3=?<br><br> 5<br> 45<br> -45<br> -5
    13·1 answer
  • (30PTS) What are the slopes of the asymptotes of a hyperbola with equation x^2/2^2-y^2/6^2=1
    11·2 answers
  • Triangle DEF has an angle D measuring 25 degrees and an angle E
    13·1 answer
  • Calcula el RIQ de las temperaturas en las Ciudades de Kansas, Misouri las temperaturas: 23,25,28,28,32,33,35 y en Paradise, Mich
    7·1 answer
  • What are the domain and range of the function?
    13·1 answer
  • Anyone PLEASE help me with this​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!