ge%20%5Cleft%28%20%5Cfrac%7B%20%5Csqrt%7Bn%20%2B%203%7D%20%7D%7B%28n%20%2B%202%29%20%5Csqrt%7Bn%20%2B%201%7D%20%7D%20%20-%20%20%5Cfrac%7B%20%5Csqrt%7Bn%7D%20%7D%7B%28n%20%2B%201%29%20%5Csqrt%7Bn%20%2B%202%7D%20%7D%20%20%5Cright%29%20" id="TexFormula1" title=" \rm\sum \limits_{n = 0}^{ \infty } \arcsin \large \left( \frac{ \sqrt{n + 3} }{(n + 2) \sqrt{n + 1} } - \frac{ \sqrt{n} }{(n + 1) \sqrt{n + 2} } \right) " alt=" \rm\sum \limits_{n = 0}^{ \infty } \arcsin \large \left( \frac{ \sqrt{n + 3} }{(n + 2) \sqrt{n + 1} } - \frac{ \sqrt{n} }{(n + 1) \sqrt{n + 2} } \right) " align="absmiddle" class="latex-formula">
1 answer:
Recall that over an appropriate domain,
Let and (these belong to the "appropriate domain", so the identity holds). We have
and
Then the sum telescopes, as
You might be interested in
Answer:
1/52
Step-by-step explanation:
Answer:
“We need to accept that we won’t always make the right decisions, that we’ll mess up royally sometimes – understanding that failure is not the opposite of success, it’s part of success.” – Arianna Huffington
Step-by-step explanation:
I think the answer is B. Or A.
Answer:
yes
Step-by-step explanation:
.................................
Assuming that 2 3 is two-thirds. You will need to fill the measuring cup 9 times.