ge%20%5Cleft%28%20%5Cfrac%7B%20%5Csqrt%7Bn%20%2B%203%7D%20%7D%7B%28n%20%2B%202%29%20%5Csqrt%7Bn%20%2B%201%7D%20%7D%20%20-%20%20%5Cfrac%7B%20%5Csqrt%7Bn%7D%20%7D%7B%28n%20%2B%201%29%20%5Csqrt%7Bn%20%2B%202%7D%20%7D%20%20%5Cright%29%20" id="TexFormula1" title=" \rm\sum \limits_{n = 0}^{ \infty } \arcsin \large \left( \frac{ \sqrt{n + 3} }{(n + 2) \sqrt{n + 1} } - \frac{ \sqrt{n} }{(n + 1) \sqrt{n + 2} } \right) " alt=" \rm\sum \limits_{n = 0}^{ \infty } \arcsin \large \left( \frac{ \sqrt{n + 3} }{(n + 2) \sqrt{n + 1} } - \frac{ \sqrt{n} }{(n + 1) \sqrt{n + 2} } \right) " align="absmiddle" class="latex-formula">
1 answer:
Recall that over an appropriate domain,

Let
and
(these belong to the "appropriate domain", so the identity holds). We have

and

Then the sum telescopes, as

You might be interested in
Answer:
The Answer is 2
Step-by-step explanation:
The rule is 4 or less let it rest. 5 or more raise the score. 6 is greater than 5 so you raise it to two
Answer:
Diverges
Step-by-step explanation:
See Image.
Answer:
there is no pictures. so there for i can not answer your question
26
Hope this was helpful !
Answer:
0
Step-by-step explanation:
1/2 * 2 is 1. 1 - 1 is 0
Have a great day/night!