Answer:
(3,3)
Step-by-step explanation:
Given


Required
Determine which can't be any of the new vertices
First, we need to determine the new vertices:

For (0,0):



For (1,0):



For (0,1):



<em>Comparing the calculated new vertices to the list of given options; (3,3) can't be any of the new vertices of the new triangle</em>
<em></em>
Im not 100% sure but I think it’s X-8.8
Answer:
Idk if its multiple choice but you can do 1 of 2 ways theres using distance formula =√(5-3)sq+(1-4)sq
=√4+9
=√13 <--
or
3.6 units
Given: The two points that are P(5,1) and Q(3,4).
To find: The distance between these two points.
Solution: It is given that there are two points that are P(5,1) and Q(3,4).
The distance between these two points can be found out as using the distance formula that is: 3.6
Thus, the distance between the given two points is 3.6 units.
So you choose 13 or 3.6 Hope this helps :)
S=Steve. S+4=Kevin. S+s+4=26. Combine: 2s+4=26. Subtract 4: 2s=22. Divide by 2: s=11. Steve ran 11 miles. :)
Suppose that equation of parabola is
y =ax² + bx + c
Since parabola passes through the point (2,−15) then
−15 = 4a + 2b + c
Since parabola passes through the point (-5,-29), then
−29 = 25a − 5b + c
Since parabola passes through the point (−3,−5), then
−5 = 9a − 3b + c
Thus, we obtained following system:
4a + 2b + c = −15
25a − 5b + c = −29
9a − 3b + c = −5
Solving it we get that
a = −2, b = −4, c = 1
Thus, equation of parabola is
y = −2x²− 4x + 1
____________________
Rewriting in the form of
(x - h)² = 4p(y - k)
i) -2x² - 4x + 1 = y
ii) -3x² - 7x = y - 11
(-3x² and -7x are isolated)
iii) -3x² - 7x - 49/36 = y - 1 - 49/36
(Adding -49/36 to both sides to get perfect square on LHS)
iv) -3(x² + 7/3x + 49/36) = y - 3
(Taking out -3 common from LHS)
v) -3(x + 7/6)² = y - 445/36
vi) (x + 7/6)² = -⅓(y - 445/36)
(Shifting -⅓ to RHS)
vii) (x + 1)² = 4(-1/12)(y - 445/36)
(Rewriting in the form of 4(-1/12) ; This is 4p)
So, after rewriting the equation would be -
(x + 7/6)² = 4(-⅛)(y - 445/36)
__________________
I hope this is what you wanted.
Regards,
Divyanka♪
__________________