1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mariana [72]
2 years ago
13

The strength of an electrical current x flowing through the electric circuit shown is expressed as a function of time t and sati

sfies the following differential equation:
\displaystyle \large{L \frac{dx}{dt} + Rx = V}
Find the strength of the electrical current x after switch S is closed at time t = 0. Assume that L, R and V are positive constants, and also that x = 0 when t = 0. Then, find \displaystyle \large{ \lim_{t \to \infty} x}
Topic: Application of Differential Equation Reviews

Mathematics
1 answer:
Elza [17]2 years ago
4 0

Answer:

The current of the circuit at t = 0 is equal to 0.

If we take the limit as t approaches infinity, the current is equal to ε/R or V/R.

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:

\displaystyle (cu)' = cu'

Derivative Property [Addition/Subtraction]:

\displaystyle (u + v)' = u' + v'

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Slope Fields

  • Separation of Variables

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:

\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:

\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:

\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Method: U-Substitution

<u>Electricity</u>

Ohm's Law: V = IR

  • <em>V</em> is voltage (in Volts)
  • <em>I</em> is current (in Amps)
  • <em>R</em> is resistance (in Ohms)

<u>Circuits</u>

  • Circuit Symbols
  • Kirchhoff's Laws (Loop and Junction Rule)
  • Inductors

Step-by-step explanation:

*Note:

In the given equation, our variable of differentiation is <em>x</em>. I will rewrite this as current <em>I</em> for physics notation purposes.

<u>Step 1: Define</u>

<em>Identify given.</em>

\displaystyle L \frac{dI}{dt} + RI = V

[Assuming switch <em>S</em> is closed] Recall that an inductor is used in a circuit to <em>resist</em> change. After a long period of time, when it hits steady-state equilibrium, we expect to see the inductor act like a wire.

<u>Step 2: Find Current Expression Pt. 1</u>

  1. [Kirchhoff's Law] Rewrite expression:
    \displaystyle L \frac{dI}{dt} = V - IR
  2. Rewrite expression by dividing <em>R</em> on both sides:
    \displaystyle \frac{L}{R} \frac{dI}{dt} = \frac{\mathcal E}{R}  - I

<u>Step 3: Find Current Expression Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:
    \displaystyle u = \frac{\mathcal E}{R} - I
  2. [<em>u</em>] Differentiation [Derivative Rules and Properties]:
    \displaystyle du = - \, dI

<u>Step 4: Find Current Expression Pt. 3</u>

  1. [Kirchhoff's Law] Apply U-Substitution:
    \displaystyle - \frac{L}{R} \frac{du}{dt} = u
  2. [Kirchhoff's Law] Apply Separation of Variables:
    \displaystyle \frac{1}{u} \, du = -\frac{L}{R} \, dt

Recall that our initial condition is when t = 0, denoted as <em>u₀</em>, and we go to whatever position <em>u</em> we are trying to find. Also recall that time <em>t</em> always ranges from <em>t</em> = 0 (time can't be negative) and to whatever <em>t</em> we are trying to find.

  1. [Kirchhoff's Law] Integrate both sides:
    \displaystyle \int\limits^u_{u_0} {\frac{1}{u}} \, du = \int\limits^t_0 {- \frac{R}{L}} \, dt
  2. [Kirchhoff's Law] Rewrite [Integration Property]:
    \displaystyle \int\limits^u_{u_0} {\frac{1}{u}} \, du = - \frac{R}{L} \int\limits^t_0 {} \, dt
  3. [1st Integral] Apply Logarithmic Integration:
    \displaystyle \ln | u | \bigg| \limits^u_{u_0} = - \frac{R}{L} \int\limits^t_0 {} \, dt
  4. [2nd Integral] Apply Integration Rule [Reverse Power Rule]:
    \displaystyle \ln | u | \bigg| \limits^u_{u_0} = - \frac{R}{L} t \bigg| \limits^t_0
  5. Apply Integration Rule [Fundamental Theorem of Calculus 1]:
    \displaystyle \ln | \frac{u}{u_0} | = - \frac{R}{L} t
  6. Apply e to both sides:
    \displaystyle e^{\ln | \frac{u}{u_0} |} = e^{- \frac{R}{L} t}
  7. Simplify:
    \displaystyle \frac{u}{u_0} = e^{- \frac{R}{L} t}
  8. Rewrite:
    \displaystyle u = u_0 e^{- \frac{R}{L} t}

Recall that our initial condition <em>u₀</em> (derived from Ohm's Law) contains only the voltage across resistor <em>R</em>, where voltage is supplied by the given battery. This is because the current is stopped once it reaches the inductor in the circuit since it <em>resists</em> change.

  1. Back-Substitute in <em>u </em>and <em>u₀</em>:
    \displaystyle \frac{\mathcal E}{R} - I = \frac{\mathcal E}{R} e^{- \frac{R}{L} t}
  2. Solve for <em>I</em>:
    \displaystyle I = \frac{\mathcal E}{R} - \frac{\mathcal E}{R} e^{- \frac{R}{L}t}

<u>Step 5: Solve</u>

If we are trying to find the strength of the electrical current <em>I</em> at <em>t</em> = 0, we simply substitute <em>t</em> = 0 into our current function:

\displaystyle\begin{aligned}I(t) & = \frac{\mathcal E}{R} - \frac{\mathcal E}{R} e^{- \frac{R}{L}t} \\I(0) & = \frac{\mathcal E}{R} - \frac{\mathcal E}{R} e^{- \frac{R}{L}(0)} \\& = \boxed{\bold{0}}\end{aligned}

If we are taking the limit as <em>t</em> approaches infinity of the current function <em>I(t)</em>, we are simply just trying to find the current <em>after a long period of time</em>, which then would just be steady-state equilibrium:

\displaystyle\begin{aligned}I(t) & = \frac{\mathcal E}{R} - \frac{\mathcal E}{R} e^{- \frac{R}{L}t} \\\lim_{t \to \infty} I(t) & = \frac{\mathcal E}{R} - \frac{\mathcal E}{R} e^{- \frac{R}{L}(\infty)} \\& = \boxed{\bold{\frac{\mathcal E}{R}}}\end{aligned}

∴ we have found the current <em>I</em> at <em>t</em> = 0 and the current <em>I</em> after a long period of time and proved that an inductor resists current running through it in the beginning and acts like a wire when in electrical equilibrium.

---

Topic: AP Physics C - EMAG

Unit: Induction

You might be interested in
Solve the following equation 3x &gt; -3
beks73 [17]
X> -1

this is the solution
5 0
4 years ago
Beth and Maria are going to the country fair. Admission costs $4 per persob for each day. They plan to go for 3 days. How much w
pshichka [43]
They will have to pay 24$ each for the both of them for all 4 days

8 0
3 years ago
Read 2 more answers
Find the surface area of the rectangular prism. Use your purple formula sheet.
Brut [27]

Answer:

328 square cm

Step-by-step explanation:

Just search up "calculate the area of a rectangular prism"

and use the online calculator.

Note:

Pls brainliest(if possible)

4 0
3 years ago
What is the median of the data represented in the line plot?
nevsk [136]

Answer:

The answer is Choice D

Step-by-step explanation

The median is the middle value in the given set of data.

If the data is even, then there will be two middle numbers, then the median is the average of these two middle numbers.

Thus, from the data, it is obvious that the number of data in the given set is 13.

Hence, the middle number is 23.

Therefore, the median of the data is 23.

6 0
4 years ago
C is opposite___?<br> Help pls
jok3333 [9.3K]

Answer:

Hey there!

Angle C is opposite to side AB, because it is opening towards that line segment.

Let me know if this helps :)

7 0
4 years ago
Other questions:
  • Simplify each radical expression. Leave in radical form. Show your work.√ (17+2√22)
    11·1 answer
  • Neil is analyzing a quadratic function f(x) and a linear function g(x). Will they intersect?
    15·1 answer
  • What’s the correct answer for this?
    8·1 answer
  • Ginger’s baby weighed only 3 3/8 pounds when it was born. The doctor said it could not leave the hospital until it weighed 5 1/5
    11·1 answer
  •  
    14·2 answers
  • Find me the answer please ​
    7·2 answers
  • Calling all experts!!!!calling all experts!!!!calling all experts!!!!calling all experts!!!!calling all experts!!!!
    14·1 answer
  • 4) There are 3 blue counters, 5 red counters and 7 green counters in a bag.
    12·2 answers
  • -17=5+9(k+4) solve for x
    11·2 answers
  • Determine whether the sequence is a geometric sequence. 6, -12, 24,-48...​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!