The sum of the sum notation ∞Σn=1 2(1/5)^n-1 is S= 5/2
<h3>How to determine the sum of the notation?</h3>
The sum notation is given as:
∞Σn=1 2(1/5)^n-1
The above notation is a geometric sequence with the following parameters
- Initial value, a = 2
- Common ratio, r = 1/5
The sum is then calculated as
S = a/(1 - r)
The equation becomes
S = 2/(1 - 1/5)
Evaluate the difference
S = 2/(4/5)
Express the equation as products
S = 2 * 5/4
Solve the expression
S= 5/2
Hence, the sum of the sum notation ∞Σn=1 2(1/5)^n-1 is S= 5/2
Read more about sum notation at
brainly.com/question/542712
#SPJ1
Answer: 1/4
Step-by-step explanation:
The cheesiest recipe would be 1 cup and the least cheesy recipe would be 3/4 cups
1 - 3/4 = 1/4
The correct answer is D
Hope this helped :)
Answer:
The correct answer is 218 math textbooks and 259 sociology textbooks.
Step-by-step explanation:
To solve this problem, we can make a system of equations. Let the number of sociology textbooks sold be represented by the variable "s" and the number of math textbooks sold be represented by the variable "m". Using these variables, we can make two equations:
s + m = 477
m + 41 = s
There are many ways to solve this system of equations. One approach we can take is substituting the value for s given by the second equation into the first equation. This is modeled below.
s + m = 477
(m + 41) + m = 477
Combining like terms on the left side of the equation yields:
2m + 41 = 477
Subtracting 41 from both sides of the equation gives us:
2m = 436
Finally, dividing both sides of the equation by 2 gives us:
m = 218
To solve for the number of sociology textbooks, we can substitute into either of our original equations.
m + 41 = s
(218) + 41 = s
s = 259
Therefore, your answer is m = 218 and s = 259, or 218 math textbooks and 259 sociology textbooks were sold.
Hope this helps!