B.) f(x)=(x^2-3)^2
a.) f(x)= (x^2+6)(x^2+5)
Complementary means the two angles add up to 90 degrees. Do 90 - 79 to find the other angle.
It's 11 degrees.
Equation of a parabola with vertex at (2, -1) is
y = a(x - 2)^2 - 1
Using the given point: -3 = a(4 - 2)^2 - 1
-2 = a(2)^2
4a = -2
a = -1/2
Therefore, required equation is
y = -1/2(x - 2)^2 - 1
y = -1/2(x^2 - 4x + 4) - 1
y = -1/2x^2 + 2x - 2 - 1
y = -1/2x^2 + 2x - 3
Answer:
-60
Step-by-step explanation:
Factor the problem out using FOIL.
The end result is: −60
−84x+9
The value of coefficent a (the number in front of the x^2) is -60.
The <em>speed</em> intervals such that the mileage of the vehicle described is 20 miles per gallon or less are: v ∈ [10 mi/h, 20 mi/h] ∪ [50 mi/h, 75 mi/h]
<h3>How to determine the range of speed associate to desired gas mileages</h3>
In this question we have a <em>quadratic</em> function of the <em>gas</em> mileage (g), in miles per gallon, in terms of the <em>vehicle</em> speed (v), in miles per hour. Based on the information given in the statement we must solve for v the following <em>quadratic</em> function:
g = 10 + 0.7 · v - 0.01 · v² (1)
An effective approach consists in using a <em>graphing</em> tool, in which a <em>horizontal</em> line (g = 20) is applied on the <em>maximum desired</em> mileage such that we can determine the <em>speed</em> intervals. The <em>speed</em> intervals such that the mileage of the vehicle is 20 miles per gallon or less are: v ∈ [10 mi/h, 20 mi/h] ∪ [50 mi/h, 75 mi/h].
To learn more on quadratic functions: brainly.com/question/5975436
#SPJ1