The probability that the transistor will last between 12 and 24 weeks is 0.424
X= lifetime of the transistor in weeks E(X)= 24 weeks
O,= 12 weeks
The anticipated value, variance, and distribution of the random variable X were all provided to us. Finding the parameters alpha and beta is necessary before we can discover the solutions to the difficulties.
X~gamma(
)
E(X)=
=
=6 weeks
V(x)=
=24/6= 4
Now we can find the solutions:
The excel formula used to create Figure one is as follows:
=gammadist(X,
,
, False)
P(
)
P(
)
P(
)
P= 0.424
Therefore, probability that the transistor will last between 12 and 24 weeks is 0.424
To learn more about probability click here:
brainly.com/question/11234923
#SPJ4
I think what you meant was
(2x - 5)² = 11 -- (1)
Square root both sides of (1), i.e.
√(2x - 5)² = ± √11 -- (2)
From (2), we have
2x - 5 = ± √11 -- (3)
By adding 5 to both sides in (3), we have
2x = 5 ± √11 -- (4)
Divide both sides of (4) by 2, and we obtain
x = (5 ± √11)/2 -- (5)
From (5), the solution set of (1) is
x = (5 + √11)/2, (5 - √11)/2 ...Ans.
Answer is -pi
Let x be this unknown number. Adding on x to pi gets us the expression x+pi
If we set x+pi equal to zero (which is a rational number) and solve for x, we get
x+pi = 0
x+pi - pi = 0 - pi
x = -pi
so adding pi to -pi will lead to 0 since
x+pi = -pi+pi = 0
2.964 bolts
Because 7.8*.38=2.964