Answer:
The value of the account in the year 2009 will be $682.
Step-by-step explanation:
The acount's balance, in t years after 1999, can be modeled by the following equation.

In which A(t) is the amount after t years, P is the initial money deposited, and r is the rate of interest.
$330 in an account in the year 1999
This means that 
$590 in the year 2007
2007 is 8 years after 1999, so P(8) = 590.
We use this to find r.




Applying ln to both sides:




Determine the value of the account, to the nearest dollar, in the year 2009.
2009 is 10 years after 1999, so this is A(10).


The value of the account in the year 2009 will be $682.
Given:
1 inch : 18 kilometers
Let us use the ratio and proportion method:
a:b = c:d where ad = bc
0.8 inches is <u>14.4 kilometers</u>
1 : 18 = 0.8 : x
x = 0.8 * 18
x = 14.4 km
1.4 inches is <u>25.2 kilometers</u>
1: 18 = 1.4 : x
x = 18 * 1.4
x = 25.2 km
2.1 inches is <u>37.8 kilometers</u>
1 : 18 = 2.1 : x
x = 18 * 2.1
x = 37.8 km
Answer:
see explanation
Step-by-step explanation:
sum the parts of the ratio , 1 + 2 + 3 = 6 parts
divide the amount by 6 to find the value of one part of the ratio
£102 ÷ 6 = £17 ← value of 1 part of the ratio , then
2 parts = 2 × £17 = £34
3 parts = 3 × £17 = £51
Gavyn gets £17
Pip gets £34
Mark gets £51
<span>(3.5, 3) is the circumcenter of triangle ABC.
The circumcenter of a triangle is the intersection of the perpendicular bisectors of each side. All three of these perpendicular bisectors will intersect at the same point. So you have a nice self check to make sure your math is correct. Now let's calculate the equation for these bisectors.
Line segment AB:
Slope
(4-2)/(1-1) = 2/0 = infinity.
This line segment is perfectly vertical. So the bisector will be perfectly horizontal, and will pass through ((1+1)/2, (4+2)/2) = (2/2, 6/2) = (1,3).
So the equation for this perpendicular bisector is y = 3.
Line segment BC
(2-2)/(6-1) = 0/5 = 0
This line segment is perfectly horizontal. So the bisector will be perfectly vertical, and will pass through ((1+6)/2,(2+2)/2) = (7/2, 4/2) = (3.5, 2)
So the equation for this perpendicular bisector is x=3.5
So those two bisectors will intersect at point (3.5,3) which is the circumcenter of triangle ABC.
Now let's do a cross check to make sure that's correct.
Line segment AC
Slope = (4-2)/(1-6) = 2/-5 = -2/5
The perpendicular will have slope 5/2 = 2.5. So the equation is of the form
y = 2.5*x + b
And will pass through the point
((1+6)/2, (4+2)/2) = (7/2, 6/2) = (3.5, 3)
Plug in those coordinates and calculate b.
y = 2.5x + b
3 = 2.5*3.5 + b
3 = 8.75 + b
-5.75 = b
So the equation for the 3rd bisector is
y = 2.5x - 5.75
Now let's check if the intersection with this line against the other 2 works.
Determining intersection between bisector of AC and AB
y = 2.5x - 5.75
y = 3
3 = 2.5x - 5.75
8.75 = 2.5x
3.5 = x
And we get the correct value. Now to check AC and BC
y = 2.5x - 5.75
x = 3.5
y = 2.5*3.5 - 5.75
y = 8.75 - 5.75
y = 3
And we still get the correct intersection.</span>