Answer:
See answer below
Step-by-step explanation:
The statement ‘x is an element of Y \X’ means, by definition of set difference, that "x is and element of Y and x is not an element of X", WIth the propositions given, we can rewrite this as "p∧¬q". Let us prove the identities given using the definitions of intersection, union, difference and complement. We will prove them by showing that the sets in both sides of the equation have the same elements.
i) x∈AnB if and only (if and only if means that both implications hold) x∈A and x∈B if and only if x∈A and x∉B^c (because B^c is the set of all elements that do not belong to X) if and only if x∈A\B^c. Then, if x∈AnB then x∈A\B^c, and if x∈A\B^c then x∈AnB. Thus both sets are equal.
ii) (I will abbreviate "if and only if" as "iff")
x∈A∪(B\A) iff x∈A or x∈B\A iff x∈A or x∈B and x∉A iff x∈A or x∈B (this is because if x∈B and x∈A then x∈A, so no elements are lost when we forget about the condition x∉A) iff x∈A∪B.
iii) x∈A\(B U C) iff x∈A and x∉B∪C iff x∈A and x∉B and x∉C (if x∈B or x∈C then x∈B∪C thus we cannot have any of those two options). iff x∈A and x∉B and x∈A and x∉C iff x∈(A\B) and x∈(A\B) iff x∈ (A\B) n (A\C).
iv) x∈A\(B ∩ C) iff x∈A and x∉B∩C iff x∈A and x∉B or x∉C (if x∈B and x∈C then x∈B∩C thus one of these two must be false) iff x∈A and x∉B or x∈A and x∉C iff x∈(A\B) or x∈(A\B) iff x∈ (A\B) ∪ (A\C).
Answer:
Step-by-step explanation:
So 11 times 2=22 so you times 11 times 2 on all sides so the answers is 22
A single appliance has 6 widgets, and a widget has 7 bolts. Therefore, you need to multiply 6 by 7 to find the number of bolts in a single appliance.
6 x 7 = 42
Now that you know the number of bolts in an appliance, you can find the number of bolts in 20 appliances by multiplying 42 by 20.
42 x 20 = 840
Hence, there are 840 bolts in 20 appliances.
I belive HN is equal to 19.
hope this helps!!