Answer:
21440
Step-by-step explanation:
<h2>
Simplify:</h2>
Start by multiplying 7x³ by x² and -5.
- 7x⁵ - 35x³ + (8x² - 3)(x² - 5)
Multiply 8x² by x² and -5.
- 7x⁵ - 35x³ + 8x⁴ - 40x² + (-3)(x² - 5)
Multiply -3 by x² and -5.
- 7x⁵ - 35x³ + 8x⁴ - 40x² -3x² + 15
Combine like terms together.
- 7x⁵ - 35x³ + 8x⁴ - 43x² + 15
Rearrange the terms in descending power order.
- 7x⁵ + 8x⁴ - 35x³ - 43x² + 15
<h2>Verify (I): </h2>
Substitute x = 5 into the above polynomial.
- 7(5)⁵ + 8(5)⁴ - 35(5)³ - 43(5)² + 15
Evaluate the exponents first.
- 7(3125) + 8(625) - 35(125) - 43(25) + 15
Multiply the terms together.
- 21875 + 5000 - 4375 - 1075 + 15
Combine the terms together.
This is the answer when substituting x = 5 into the simplified expression.
<h2>
Verify (II):</h2>
Substitute x = 5 into the expression.
- [7(5)³ + 8(5)² - 3][(5)² - 5]
Evaluate the exponents first.
- [7(125) + 8(25) - 3][(25) - 5]
Multiply the terms in the first bracket next.
Evaluate the expressions inside the brackets.
Multiply these two terms together.
This is the answer when substituting x = 5 into the original (unsimplified) expression.
Answer:
Solution given:
The area of a circle =80.86cm²
we have:
The area of a circle =πr²
substituting value of area of circle we get
80.86cm=3.14*r²
dividing both side by 3.14
80.86/3.14=3.14*r²/3.14
25.75=r²
doing square root on both side

r=5.07cm
<u>The</u><u> </u><u>length</u><u> </u><u>of</u><u> </u><u>radius</u><u> </u><u>is</u><u> </u><u>5</u><u>.</u><u>0</u><u>7</u><u>cm</u>
According to the use of binomial expansion, the approximate value of √3 is found by applying the infinite sum √3 = 1 + (1 /2) · 2 - (1 / 8) · 2² + (1 / 16) · 2³ - (5 / 128) · 2⁴ + (7 / 256) · 2⁵ - (21 / 1024) · 2⁶ + (33 / 2048) · 2⁷ - (429 / 32768) · 2⁸ +...
An acceptable result cannot be found manually for it requires a <em>high</em> number of elements, with the help of a solver we find that the <em>approximate</em> value of √3 is 1.732.
<h3>How to approximate the value of a irrational number by binomial theorem</h3>
Binomial theorem offers a formula to find the <em>analytical</em> form of the power of a binomial of the form (a + b)ⁿ:
(1)
Where:
- a, b - Constants of the binomial.
- n - Grade of the power binomial.
- k - Index of the k-th element of the power binomial.
If we know that a = 1, b = 2 and n = 1 / 2, then an approximate expression for the square root is:
√3 = 1 + (1 /2) · 2 - (1 / 8) · 2² + (1 / 16) · 2³ - (5 / 128) · 2⁴ + (7 / 256) · 2⁵ - (21 / 1024) · 2⁶ + (33 / 2048) · 2⁷ - (429 / 32768) · 2⁸ +...
To learn more on binomial expansions: brainly.com/question/12249986
#SPJ1