Here's our equation.

We want to find out when it returns to ground level (h = 0)
To find this out, we can plug in 0 and solve for t.


So the ball will return to the ground at the positive value of

seconds.
What about the vertex? Simple! Since all parabolas are symmetrical, we can just take the average between our two answers from above to find t at the vertex and then plug it in to find h!

Answer:
a) The function is constantly increasing and is never decreasing
b) There is no local maximum or local minimum.
Step-by-step explanation:
To find the intervals of increasing and decreasing, we can start by finding the answers to part b, which is to find the local maximums and minimums. We do this by taking the derivatives of the equation.
f(x) = ln(x^4 + 27)
f'(x) = 1/(x^2 + 27)
Now we take the derivative and solve for zero to find the local max and mins.
f'(x) = 1/(x^2 + 27)
0 = 1/(x^2 + 27)
Since this function can never be equal to one, we know that there are no local maximums or minimums. This also lets us know that this function will constantly be increasing.
The equation would be 8x +3 + -19. Substitute your given answers in. Your answer would be B. Negative 2
Answer:
Is D
Step-by-step explanation:
Because is moving four times right and four times down.