Answer:
C=y=sin1/2x
Step-by-step explanation:
As given in the graph:
Amplitude= 1
period=2π
Finding function of sin that have period of 4π and amplitude 1
A: y=1/2sinx
Using the formula asin(bx-c)+d to find the amplitude and period
a=1/2
b=1
c=0
d=0
Amplitude=|a|
=1/2
Period= 2π/b
=2π
B: y=sin2x
Using the formula asin(bx-c)+d to find the amplitude and period
a=1
b=2
c=0
d=0
Amplitude=|a|
=1
Period= 2π/2
=π
C: y=sin1/2x
Using the formula asin(bx-c)+d to find the amplitude and period
a=1
b=1/2
c=0
d=0
Amplitude=|a|
=1
Period= 2π/1/2
=4π
D: y=sin1/4x
Using the formula asin(bx-c)+d to find the amplitude and period
a=1
b=1/4
c=0
d=0
Amplitude=|a|
=1
Period= 2π/1/4
=8π
Hence only c: y=sin1/2x has period of 2π and amplitude 1
Answer:
47xy
Step-by-step explanation:
The answer is 47xy because you add the area of the first quadrant to the second quadratic triangle to reactive the triangle bade
Answer:
1.36 divided by 0.08 = 17
Step-by-step explanation:
X could be the positive integers 2, 3, 4, or 5
The answer is 3) the line of g(x) is steeper and has a lower y-intercept!