<u>Question 1 solution:</u>
You have two unknowns here:
Let the Water current speed = W
Let Rita's average speed = R
We are given <em>two </em>situations, where we can form <em>two equations</em>, and therefore solve for the <em>two unknowns, W, R</em>:
Part 1) W→ , R←(against current, upstream)
If Rita is paddling at 2mi/hr against the current, this means that the current is trying to slow her down. If you look at the direction of the water, it is "opposing" Rita, it is "opposite", therefore, our equation must have a negative sign for water<span>:
</span>R–W=2 - equation 1
Part 2) W→ , R<span>→</span>(with current)
Therefore, R+W=3 - equation 2
From equation 1, W=R-2,
Substitute into equation 2.
R+(R–2)=3
2R=5
R=5/2mi/hr
So when W=0 (still), R=5/2mi/hr
Finding the water speed using the same rearranging and substituting process:
1... R=2+W
2... (2+W)+W=3
2W=1
W=1/2mi/hr
Answer:
y = 4x^5 - 12x^4 + 6x and
y = 5x^3 - 2x
Step-by-step explanation:
The system of equations that can be used to find the roots of the equation 4x^5-12x^4+6x=5x^3-2x are;
y = 4x^5 - 12x^4 + 6x and
y = 5x^3 - 2x
We simply formulate two equations by splitting the left and the right hand sides of the given equation.
The next step is to graph these two system of equations on the same graph in order to determine the solution(s) to the given original equation.
The roots of the given equation will be given by the points where these two equations will intersect.
The graph of these two equations is as shown in the attachment below;
The roots are thus;
x = 0 and x = 0.813
Answer:
Step-by-step explanation:
The amplitude is half of the range.
a=(maximum-minimum)/2, in this case
a=(2-(-4))/2
a=6/2
a=3
Y = mx + b
in this case m = 2 and b = 1 so
equation
y =2x + 1
hope this helps