Answer:
Sry
Step-by-step explanation:
Using the Empirical Rule and the Central Limit Theorem, we have that:
- About 68% of the sample mean fall with in the intervals $1.64 and $1.82.
- About 99.7% of the sample mean fall with in the intervals $1.46 and $2.
<h3>What does the Empirical Rule state?</h3>
It states that, for a normally distributed random variable:
- Approximately 68% of the measures are within 1 standard deviation of the mean.
- Approximately 95% of the measures are within 2 standard deviations of the mean.
- Approximately 99.7% of the measures are within 3 standard deviations of the mean.
<h3>What does the Central Limit Theorem state?</h3>
By the Central Limit Theorem, the sampling distribution of sample means of size n has standard deviation
.
In this problem, the standard deviation of the distribution of sample means is:

68% of the means are within 1 standard deviation of the mean, hence the bounds are:
99.7% of the means are within 3 standard deviations of the mean, hence the bounds are:
More can be learned about the Empirical Rule at brainly.com/question/24537145
#SPJ1
Answer:
Approximately 66.4 Meters
Step-by-step explanation:
So we have a rectangle with a width of 18.8 meters and a diagonal with 23.7 meters. To find the perimeter, we need to find the length first. Since a rectangle has four right angles, we can use the Pythagorean Theorem, where the diagonal is the hypotenuse.

Plug in 18.8 for either <em>a </em>or <em>b. </em>Plug in the diagonal 23.7 for <em>c. </em>
<em />
Therefore, the length is 14.4 meters. Now, find the perimeter:
