1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuliya22 [10]
2 years ago
7

If y=4 when x=12, find y when x=-24

Mathematics
1 answer:
goldfiish [28.3K]2 years ago
3 0

The value of y is -8 if the x  -24 and y varies directly with x, and If y = 4 when x = 12.

<h3>What is a proportional relationship?</h3>

It is defined as the relationship between two variables when the first variable increases, the second variable also increases according to the constant factor.

The question is incomplete.

The complete question is:

If y varies directly with x, and If y = 4 when x = 12, how do you find y when x = -24?

y ∝ x  (given)

y = kx

k is the constant of proportionality.

4 = 12k  (y = 4, and x = 12)

k = 1/3

y = x/3

Plug x = -24

y = -24/3

y = -8

Thus, the value of y is -8 if the x  -24 and y varies directly with x, and If y = 4 when x = 12.

Learn more about the proportional here:

brainly.com/question/14263719

#SPJ1

You might be interested in
Simplify the expression using the distributive property 9(4y-7)
lbvjy [14]
Multiply what is outside the parenthesis by what is inside.
the answer is 36y-63
hope i helped!!
5 0
3 years ago
Read 2 more answers
a car traveling at 30 m/s starts to decelerate steadily. it comes to a complete stop in 12 seconds. what is its acceleration?
creativ13 [48]
Just divide -30 m/s (the change in velocity) by 12 seconds (the time required for the car to come to a stop):

-30 m/s
----------- = - 2,5 m / (sec)^2              (answer)
 12 sec
5 0
3 years ago
THE RIGHT ANSWER WILL RECIEVE A BRAINLEST AND POINTS AND THANXS!!!
kotegsom [21]

Answer:

1. F

2. G

3. H

4. E

5. C

6. B

7. A

8. D

Step-by-step explanation:

1. For a horizontal line, this is zero. F. Slope

2. These lines have the same slope.  G Parallel Lines

3. These lines meet at 90°. H Perpendicular Lines

4. This is where two lines meet.  E. Point of Intersection

5. For the line 3 2 6 x y   , this is −3. C. Y-intercept

6. The numbers 10 and 1 /10 are examples.  B Reciprocals

7. This is the name for an equation of a line  in the form Ax By C    0. A. Standard Form

8. For a vertical line, the value of x is constant  and equal to this D. x-intercept


8 0
4 years ago
Please Help!!
Vlad [161]

Answer:

1. 1.28

2. 55

3. +

Step-by-step explanation:

1. 0.043 x 10 {3}

= 0.043 x (10 x 3)

= 0.043 x 30

= <u>1.28</u>

2. 5 + (9) (6) - 4

= 5 + 9 x 6 - 4

= 5 + 54 - 4

= 59 - 4

= <u>55</u>

3. Which of the these operations should be completed last when solvingan equation?

a. x

b. +

c. ()

d.÷

<u>b. +</u>

6 0
3 years ago
Quick somebody solve this please<br><br> 3(38/23 + 2)-7(2 × 38/23 - 4)=4(3 × 38/23-1)
scoundrel [369]

Answer:

equation is always true (im sorry if I got this wrong)

Step-by-step explanation:

a brainly would be epic :0

Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :

          3*(38/23+2)-7*(2*38/23-4)-(4*(3*38/23-1))=0

Step by step solution :

Step  1  :

           38

Simplify   ——

           23

Equation at the end of step  1  :

      38            38              38

 ((3•(——+2))-(7•((2•——)-4)))-(4•((3•——)-1))  = 0

      23            23              23

Step  2  :

Rewriting the whole as an Equivalent Fraction :

2.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  23  as the denominator :

        1     1 • 23

   1 =  —  =  ——————

        1       23  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

2.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

114 - (23)     91

——————————  =  ——

    23         23

Equation at the end of step  2  :

      38            38          91

 ((3•(——+2))-(7•((2•——)-4)))-(4•——)  = 0

      23            23          23

Step  3  :

           38

Simplify   ——

           23

Equation at the end of step  3  :

      38            38       364

 ((3•(——+2))-(7•((2•——)-4)))-———  = 0

      23            23       23

Step  4  :

Rewriting the whole as an Equivalent Fraction :

4.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  23  as the denominator :

        4     4 • 23

   4 =  —  =  ——————

        1       23  

Adding fractions that have a common denominator :

4.2       Adding up the two equivalent fractions

76 - (4 • 23)     -16

—————————————  =  ———

     23           23

Equation at the end of step  4  :

      38        -16   364

 ((3•(——+2))-(7•———))-———  = 0

      23        23    23

Step  5  :

           38

Simplify   ——

           23

Equation at the end of step  5  :

        38           -112     364

 ((3 • (—— +  2)) -  ————) -  ———  = 0

        23            23      23

Step  6  :

Rewriting the whole as an Equivalent Fraction :

6.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  23  as the denominator :

        2     2 • 23

   2 =  —  =  ——————

        1       23  

Adding fractions that have a common denominator :

6.2       Adding up the two equivalent fractions

38 + 2 • 23     84

———————————  =  ——

    23          23

Equation at the end of step  6  :

       84     -112     364

 ((3 • ——) -  ————) -  ———  = 0

       23      23      23

Step  7  :

Adding fractions which have a common denominator :

7.1       Adding fractions which have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

252 - (-112)     364

————————————  =  ———

     23          23

Equation at the end of step  7  :

 364    364

 ——— -  ———  = 0

 23     23

Step  8  :

Adding fractions which have a common denominator :

8.1       Adding fractions which have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

364 - (364)      0

———————————  =  ——

    23          23

Equation at the end of step  8  :

 0  = 0

Step  9  :

Equations which are always true :

9.1    Solve   0  = 0This equation is a tautology (Something which is always true)

Equation is alway true

6 0
3 years ago
Other questions:
  • Creating box plots
    15·1 answer
  • Raleigh's temperature was 24 degrees F. At noon the temperature increase by 125%. At 4pm the temperature increase by 40%. What i
    11·1 answer
  • What does n equal in 2(n+5)=-2
    5·1 answer
  • If three X equal to 216 then find the value of 3 X - 2 ​
    12·1 answer
  • How are determinants used to find areas of polygons?
    11·1 answer
  • An arts academy requires there to be 5 teachers for every 90 students and 3 tutors for every 30 students. How many students does
    8·1 answer
  • Jar contains 8 green, 4 blue, 10 red, and 2 yellow skittles. A skittle is randomly drawn replaced then another is drawn. Find ea
    8·2 answers
  • Meal A has 170 calories in 3 servings. Meal B has 160 calories
    8·1 answer
  • Given A(-3, 4), B(0, 1), and C(4,2), reflect as follows: Ry-axis(ABC). What is B​
    9·1 answer
  • Please look for the question in the picture.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!