Answer:
lw +
× π ×
⇒ Answer D is correct
Step-by-step explanation:
First, let us find the area of the semi-circle.
Area =
× π × r²
<u>Given that,</u>
diameter of the semi-circle is ⇒ <em>l</em>
∴ radius ⇒ <em>l / 2</em>
<u>Let us find it now.</u>
Area =
× π × r²
Area =
× π × 
<u> </u>
Secondly, let us find the area of the rectangle.
Area = length × width
<u>Given that,</u>
length ⇒ <em>l</em>
width ⇒ w
<u>Let us find it now.</u>
Area = length × width
Area = l ×w
Area = lw
<u> </u>
And now let us <u>find the total area.</u>
Total area = Area of the rectangle + Area of the semi - circle
Tota area = lw +
× π × 
70/81 is 7/81+7/9 as a proper fraction
Answer:
x = 2√13.
Step-by-step explanation:
Using the Pythagoras theorem:
14^2 = x^2 + 12^2
x^2 = 14^2 - 12^2
x^2 = (14 + 12)(14 - 12) = 52
x = √52
x = √4*√13
x = 2√13.
X/3 +4 = 5+x/6
6(x/3 +4 = 5+x/6)
2x+ 24 = 30 +x
x= 6