Answer:
0.2
Step-by-step explanation:
3/15=0.2
I'm thinking this is what the problem looks like:

. The first thing to do is to move the

over to the other side because it has a common denominator with the other side. Doing that and at the same time combining them over their common denominator looks like this:

. The best way to solve for x now is to cross-multiply to get 3(4-x)=-4(x-4). Distributing through the parenthesis is 12 - 3x = -4x + 16. Solving for x gives us x = 4. Of course when we sub a 4 back in for x we get real problems, don't we? Dividing by zero breaks every rule in math that there ever was! So, yes, the solution is extraneous.
Answer:
1/63
Step-by-step explanation:
There are a couple of ways to do this.
<h3>1) </h3>
Look for the GCF of the numerators when a common denominator is used.
GCF(3/7, 4/9) = GCF(27/63, 28/63) = (1/63)·GCF(27, 28)
GCF(3/7, 4/9) = 1/63
__
<h3>2) </h3>
Use Euclid's algorithm. If the remainder from division of the larger by the smaller is zero, then the smaller is the GCF; otherwise, the remainder replaces the larger, and the algorithm repeats.
(4/9)/(3/7) = 1 remainder 1/63*
(3/7)/(1/63) = 27 remainder 0
The GCF is 1/63.
__
* The quotient is 28/27 = 1 +1/27 = 1 +(1/27)(3/7)/(3/7) = 1 +(1/63)/(3/7) or 1 with a remainder of 1/63.
_____
<em>Additional comment</em>
3/7 = (1/63) × 27
4/9 = (1/63) × 28
Answer:
Ok, we have a system of equations:
6*x + 3*y = 6*x*y
2*x + 4*y = 5*x*y
First, we want to isolate one of the variables,
As we have almost the same expression (x*y) in the right side of both equations, we can see the quotient between the two equations:
(6*x + 3*y)/(2*x + 4*y) = 6/5
now we isolate one off the variables:
6*x + 3*y = (6/5)*(2*x + 4*y) = (12/5)*x + (24/5)*y
x*(6 - 12/5) = y*(24/5 - 3)
x = y*(24/5 - 3)/(6 - 12/5) = 0.5*y
Now we can replace it in the first equation:
6*x + 3*y = 6*x*y
6*(0.5*y) + 3*y = 6*(0.5*y)*y
3*y + 3*y = 3*y^2
3*y^2 - 6*y = 0
Now we can find the solutions of that quadratic equation as:

So we have two solutions
y = 0
y = 2.
Suppose that we select the solution y = 0
Then, using one of the equations we can find the value of x:
2*x + 4*0 = 5*x*0
2*x = 0
x = 0
(0, 0) is a solution
if we select the other solution, y = 2.
2*x + 4*2 = 5*x*2
2*x + 8 = 10*x
8 = (10 - 2)*x = 8x
x = 1.
(1, 2) is other solution