Answer:
<u>A. p(hat) = .139</u>
We divide our sample population by the amount who tested positive. 14851/107109 = .139.
<u>B. 1.62 million</u>
We just multiply the p times the population. 11.69 M * .139 = 1.62 M
<u>C. No</u>
It depends upon the sample method. From what I can tell, I assume all conditions are met and it was not biased.
If it wasn't random, that is a problem, but we aren't given this information.
We can test if it's small enough. It can't be larger than 10% of the population. 107109 * 10 < 11.69 million, so it's small enough.
We can also test if it's large enough. np and nq must be greater than 10. 107100 * .139 > 10, 107100 * .861 > 10.
<b and the angle 79 degrees are exterior alternate angles which are equal
b = 79 degrees.
Answer:
It's very simple. In 4 decimal digits there are 10,000 (0000 to 9999) possible values. The odds of any one of them coming up randomly is one in 10,000. A specific "4 digit number" would have 1/9000 chance, since there are 9000 4 digit numbers (1000-9999).
Step-by-step explanation:
Answer:
X=9?
90°
Step-by-step explanation:
31 hope that helps have a good one