1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
worty [1.4K]
2 years ago
14

Solve for x (2^2/x) (2^4/x) = 2^12

Mathematics
1 answer:
earnstyle [38]2 years ago
8 0

\textsf{\qquad\qquad\huge\underline{{\sf Answer}}}

Let's solve ~

\qquad \sf  \dashrightarrow \:(2 {}^{ \frac{2}{x} } ) \sdot(2 {}^{ \frac{4}{x} } ) = 2 {}^{12}

\qquad \sf  \dashrightarrow \:(2 {}^{ \frac{2}{x} +  \frac{4}{x}  } ) = 2 {}^{12}

\qquad \sf  \dashrightarrow \:(2 {}^{   \frac{6}{x}  } ) = 2 {}^{12}

Now, since the base on both sides are equal, therefore their exponents are equal as well ~

\qquad \sf  \dashrightarrow \: \dfrac{6}{x}  = 12

\qquad \sf  \dashrightarrow \:x =  \dfrac{6}{12}

\qquad \sf  \dashrightarrow \:x =  \dfrac{1}{2}

or

\qquad \sf  \dashrightarrow \:x = 0.5

Hope you got the required Answer ~

You might be interested in
I need help I watch anime though but fr I need help thx
Vilka [71]

Answer:

Step-by-step explanation:

In this question we have to find the expression for the value of temperature in terms of degrees Celsius.

Since, the given expression is,

F = 1.8C + 32

F - 32 = 1.8C + 32 - 32

F - 32 = 1.8C

\frac{F-32}{1.8}=\frac{1.8C}{1.8}

\frac{F-32}{1.8}=C

For F = C,

\frac{C-32}{1.8}=C

C - 32 = 1.8C

C - 1.8C = 32

-0.8C = 32

C = -\frac{32}{0.8}

C = -40

Therefore, at (-40°C) degrees of temperature degrees Fahrenheit and degrees Celsius are equal.

8 0
3 years ago
Uestion
Stella [2.4K]

Check the picture below, so the park looks more or less like so, with the paths in red, so let's find those midpoints.

~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ J(\stackrel{x_1}{-3}~,~\stackrel{y_1}{1})\qquad K(\stackrel{x_2}{1}~,~\stackrel{y_2}{3}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ 1 -3}{2}~~~ ,~~~ \cfrac{ 3 +1}{2} \right) \implies \left(\cfrac{ -2 }{2}~~~ ,~~~ \cfrac{ 4 }{2} \right)\implies JK=(-1~~,~~2) \\\\[-0.35em] ~\dotfill

~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ L(\stackrel{x_1}{5}~,~\stackrel{y_1}{-1})\qquad M(\stackrel{x_2}{-1}~,~\stackrel{y_2}{-3}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ -1 +5}{2}~~~ ,~~~ \cfrac{ -3 -1}{2} \right) \implies \left(\cfrac{ 4 }{2}~~~ ,~~~ \cfrac{ -4 }{2} \right)\implies LM=(2~~,~~-2) \\\\[-0.35em] ~\dotfill

~~~~~~~~~~~~\textit{distance between 2 points} \\\\ JK(\stackrel{x_1}{-1}~,~\stackrel{y_1}{2})\qquad LM(\stackrel{x_2}{2}~,~\stackrel{y_2}{-2})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ JKLM=\sqrt{(~~2 - (-1)~~)^2 + (~~-2 - 2~~)^2} \\\\\\ JKLM=\sqrt{(2 +1)^2 + (-2 - 2)^2} \implies JKLM=\sqrt{( 3 )^2 + ( -4 )^2} \\\\\\ JKLM=\sqrt{ 9 + 16 } \implies JKLM=\sqrt{ 25 }\implies \boxed{JKLM=5}

now, let's check the other path, JM and KL

~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ J(\stackrel{x_1}{-3}~,~\stackrel{y_1}{1})\qquad M(\stackrel{x_2}{-1}~,~\stackrel{y_2}{-3}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ -1 -3}{2}~~~ ,~~~ \cfrac{ -3 +1}{2} \right) \implies \left(\cfrac{ -4 }{2}~~~ ,~~~ \cfrac{ -2 }{2} \right)\implies JM=(-2~~,~~-1) \\\\[-0.35em] ~\dotfill

~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ K(\stackrel{x_1}{1}~,~\stackrel{y_1}{3})\qquad L(\stackrel{x_2}{5}~,~\stackrel{y_2}{-1}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ 5 +1}{2}~~~ ,~~~ \cfrac{ -1 +3}{2} \right) \implies \left(\cfrac{ 6 }{2}~~~ ,~~~ \cfrac{ 2 }{2} \right)\implies KL=(3~~,~~1) \\\\[-0.35em] ~\dotfill

~~~~~~~~~~~~\textit{distance between 2 points} \\\\ JM(\stackrel{x_1}{-2}~,~\stackrel{y_1}{-1})\qquad KL(\stackrel{x_2}{3}~,~\stackrel{y_2}{1})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ JMKL=\sqrt{(~~3 - (-2)~~)^2 + (~~1 - (-1)~~)^2} \\\\\\ JMKL=\sqrt{(3 +2)^2 + (1 +1)^2} \implies JMKL=\sqrt{( 5 )^2 + ( 2 )^2} \\\\\\ JMKL=\sqrt{ 25 + 4 } \implies \boxed{JMKL=\sqrt{ 29 }}

so the red path will be  5~~ + ~~\sqrt{29} ~~ \approx ~~ \blacksquare~~ 10 ~~\blacksquare

3 0
2 years ago
Simplify this expression<br> 3x^2 * 4x^5
Readme [11.4K]

Answer:

Step-by-step explanation:

5 0
3 years ago
Brandon owes his brother $100. He will repay his brother $5 each week. Which expression gives the amount in dollars Brandon will
trasher [3.6K]
It’s b because n equals weeks so after the first week he has given back five dollars because 5 time 1 is 5.
8 0
4 years ago
Read 2 more answers
Jada did 42 pushups<br><br> SOMEONE HELP PLEASE!
Fed [463]

Answer:

No answer

Step-by-step explanation:

7 0
3 years ago
Other questions:
  • The town of winters has a total population of 4026. if 1342 children live in winters, rounded to the nearest whole percent, what
    10·2 answers
  • Somebody help thanks
    15·1 answer
  • I need help with this !
    7·2 answers
  • In the figure below, 7 || h. Find the values of y and x.<br> 630<br> 3 x<br> 150 /yº
    7·1 answer
  • Given the equation 4x + 2y = 10, find the value of y that<br> corresponds to a value of 3 for x.
    5·1 answer
  • Ent/twnbxfydy
    7·1 answer
  • Please help mme...................................
    12·2 answers
  • osh wants to make a set of 12 ceramic cups. He figures he'll need 0.75 of a pound of clay for each cup. How many pounds of clay
    13·1 answer
  • Round to the whole number 5.0927
    10·2 answers
  • PLEASE HELP Which expression represents the difference quotient of the function f (x) = negative StartRoot 2 x EndRoot?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!