Answer:
Step-by-step explanation:
In this question we have to find the expression for the value of temperature in terms of degrees Celsius.
Since, the given expression is,
F = 1.8C + 32
F - 32 = 1.8C + 32 - 32
F - 32 = 1.8C


For F = C,

C - 32 = 1.8C
C - 1.8C = 32
-0.8C = 32
C = 
C = -40
Therefore, at (-40°C) degrees of temperature degrees Fahrenheit and degrees Celsius are equal.
Check the picture below, so the park looks more or less like so, with the paths in red, so let's find those midpoints.
![~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ J(\stackrel{x_1}{-3}~,~\stackrel{y_1}{1})\qquad K(\stackrel{x_2}{1}~,~\stackrel{y_2}{3}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ 1 -3}{2}~~~ ,~~~ \cfrac{ 3 +1}{2} \right) \implies \left(\cfrac{ -2 }{2}~~~ ,~~~ \cfrac{ 4 }{2} \right)\implies JK=(-1~~,~~2) \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bmiddle%20point%20of%202%20points%20%7D%20%5C%5C%5C%5C%20J%28%5Cstackrel%7Bx_1%7D%7B-3%7D~%2C~%5Cstackrel%7By_1%7D%7B1%7D%29%5Cqquad%20K%28%5Cstackrel%7Bx_2%7D%7B1%7D~%2C~%5Cstackrel%7By_2%7D%7B3%7D%29%20%5Cqquad%20%5Cleft%28%5Ccfrac%7B%20x_2%20%2B%20x_1%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20y_2%20%2B%20y_1%7D%7B2%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28%5Ccfrac%7B%201%20-3%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%203%20%2B1%7D%7B2%7D%20%5Cright%29%20%5Cimplies%20%5Cleft%28%5Ccfrac%7B%20-2%20%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%204%20%7D%7B2%7D%20%5Cright%29%5Cimplies%20JK%3D%28-1~~%2C~~2%29%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ L(\stackrel{x_1}{5}~,~\stackrel{y_1}{-1})\qquad M(\stackrel{x_2}{-1}~,~\stackrel{y_2}{-3}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ -1 +5}{2}~~~ ,~~~ \cfrac{ -3 -1}{2} \right) \implies \left(\cfrac{ 4 }{2}~~~ ,~~~ \cfrac{ -4 }{2} \right)\implies LM=(2~~,~~-2) \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bmiddle%20point%20of%202%20points%20%7D%20%5C%5C%5C%5C%20L%28%5Cstackrel%7Bx_1%7D%7B5%7D~%2C~%5Cstackrel%7By_1%7D%7B-1%7D%29%5Cqquad%20M%28%5Cstackrel%7Bx_2%7D%7B-1%7D~%2C~%5Cstackrel%7By_2%7D%7B-3%7D%29%20%5Cqquad%20%5Cleft%28%5Ccfrac%7B%20x_2%20%2B%20x_1%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20y_2%20%2B%20y_1%7D%7B2%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28%5Ccfrac%7B%20-1%20%2B5%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20-3%20-1%7D%7B2%7D%20%5Cright%29%20%5Cimplies%20%5Cleft%28%5Ccfrac%7B%204%20%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20-4%20%7D%7B2%7D%20%5Cright%29%5Cimplies%20LM%3D%282~~%2C~~-2%29%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

now, let's check the other path, JM and KL
![~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ J(\stackrel{x_1}{-3}~,~\stackrel{y_1}{1})\qquad M(\stackrel{x_2}{-1}~,~\stackrel{y_2}{-3}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ -1 -3}{2}~~~ ,~~~ \cfrac{ -3 +1}{2} \right) \implies \left(\cfrac{ -4 }{2}~~~ ,~~~ \cfrac{ -2 }{2} \right)\implies JM=(-2~~,~~-1) \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bmiddle%20point%20of%202%20points%20%7D%20%5C%5C%5C%5C%20J%28%5Cstackrel%7Bx_1%7D%7B-3%7D~%2C~%5Cstackrel%7By_1%7D%7B1%7D%29%5Cqquad%20M%28%5Cstackrel%7Bx_2%7D%7B-1%7D~%2C~%5Cstackrel%7By_2%7D%7B-3%7D%29%20%5Cqquad%20%5Cleft%28%5Ccfrac%7B%20x_2%20%2B%20x_1%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20y_2%20%2B%20y_1%7D%7B2%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28%5Ccfrac%7B%20-1%20-3%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20-3%20%2B1%7D%7B2%7D%20%5Cright%29%20%5Cimplies%20%5Cleft%28%5Ccfrac%7B%20-4%20%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20-2%20%7D%7B2%7D%20%5Cright%29%5Cimplies%20JM%3D%28-2~~%2C~~-1%29%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ K(\stackrel{x_1}{1}~,~\stackrel{y_1}{3})\qquad L(\stackrel{x_2}{5}~,~\stackrel{y_2}{-1}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ 5 +1}{2}~~~ ,~~~ \cfrac{ -1 +3}{2} \right) \implies \left(\cfrac{ 6 }{2}~~~ ,~~~ \cfrac{ 2 }{2} \right)\implies KL=(3~~,~~1) \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bmiddle%20point%20of%202%20points%20%7D%20%5C%5C%5C%5C%20K%28%5Cstackrel%7Bx_1%7D%7B1%7D~%2C~%5Cstackrel%7By_1%7D%7B3%7D%29%5Cqquad%20L%28%5Cstackrel%7Bx_2%7D%7B5%7D~%2C~%5Cstackrel%7By_2%7D%7B-1%7D%29%20%5Cqquad%20%5Cleft%28%5Ccfrac%7B%20x_2%20%2B%20x_1%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20y_2%20%2B%20y_1%7D%7B2%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28%5Ccfrac%7B%205%20%2B1%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20-1%20%2B3%7D%7B2%7D%20%5Cright%29%20%5Cimplies%20%5Cleft%28%5Ccfrac%7B%206%20%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%202%20%7D%7B2%7D%20%5Cright%29%5Cimplies%20KL%3D%283~~%2C~~1%29%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

so the red path will be 
Answer:
Step-by-step explanation:
It’s b because n equals weeks so after the first week he has given back five dollars because 5 time 1 is 5.
Answer:
No answer
Step-by-step explanation: