The solution for your answer is 12
Speed of the east bound cyclist is 12 mph and the speed of west bound cyclist is 15 mph.
<u>Solution:</u>
Let us assume that x is speed of slower eastbound cyclist
So, x+3 will be the speed of faster westbound cyclist
We know that distance is the product of speed and time. That is,

West-bound DATA:
Rate of speed = x+3 mph ; Time = 6 hrs ; distance = 6(x+3) = 6x+18 miles
East-bound DATA:
Rate of speed = x mph ; time = 6 hrs. ; distance = 6x miles
On solving,
Distance apart = 162



So, the rate of speed of the east bound cyclist is 12 mph and the rate of speed of the west bound cyclist will be 
<span>For the plane, we have z = 5x + 9y
For the region, we first find its boundary curves' points of intersection.
x = x^4 ==> x = 0, 1.
Since x > x^4 for y in [0, 1],
The volume of the solid equals
![\int\limits^1_0 { \int\limits_{x^4}^x {(5x+9y)} \, dy } \, dx = \int\limits^1_0 {\left[5xy+ \frac{9}{2} y^2\right]_{x^4}^{x}} \, dx \\ \\ =\int\limits^1_0 {\left[\left(5x(x)+ \frac{9}{2} (x)^2\right)-\left(5x(x^4)+ \frac{9}{2} (x^4)^2\right)\right]} \, dx \\ \\ =\int\limits^1_0 {\left(5x^2+ \frac{9}{2} x^2-5x^5- \frac{9}{2} x^8\right)} \, dx =\int\limits^1_0 {\left( \frac{19}{2} x^2-5x^5- \frac{9}{2} x^8\right)} \, dx \\ \\ =\left[ \frac{19}{6} x^3- \frac{5}{6} x^6- \frac{1}{2} x^9\right]^1_0](https://tex.z-dn.net/?f=%20%5Cint%5Climits%5E1_0%20%7B%20%5Cint%5Climits_%7Bx%5E4%7D%5Ex%20%7B%285x%2B9y%29%7D%20%5C%2C%20dy%20%7D%20%5C%2C%20dx%20%3D%20%5Cint%5Climits%5E1_0%20%7B%5Cleft%5B5xy%2B%20%5Cfrac%7B9%7D%7B2%7D%20y%5E2%5Cright%5D_%7Bx%5E4%7D%5E%7Bx%7D%7D%20%5C%2C%20dx%20%20%5C%5C%20%20%5C%5C%20%3D%5Cint%5Climits%5E1_0%20%7B%5Cleft%5B%5Cleft%285x%28x%29%2B%20%5Cfrac%7B9%7D%7B2%7D%20%28x%29%5E2%5Cright%29-%5Cleft%285x%28x%5E4%29%2B%20%5Cfrac%7B9%7D%7B2%7D%20%28x%5E4%29%5E2%5Cright%29%5Cright%5D%7D%20%5C%2C%20dx%20%20%5C%5C%20%20%5C%5C%20%3D%5Cint%5Climits%5E1_0%20%7B%5Cleft%285x%5E2%2B%20%5Cfrac%7B9%7D%7B2%7D%20x%5E2-5x%5E5-%20%5Cfrac%7B9%7D%7B2%7D%20x%5E8%5Cright%29%7D%20%5C%2C%20dx%20%3D%5Cint%5Climits%5E1_0%20%7B%5Cleft%28%20%5Cfrac%7B19%7D%7B2%7D%20x%5E2-5x%5E5-%20%5Cfrac%7B9%7D%7B2%7D%20x%5E8%5Cright%29%7D%20%5C%2C%20dx%20%5C%5C%20%20%5C%5C%20%3D%5Cleft%5B%20%5Cfrac%7B19%7D%7B6%7D%20x%5E3-%20%5Cfrac%7B5%7D%7B6%7D%20x%5E6-%20%5Cfrac%7B1%7D%7B2%7D%20x%5E9%5Cright%5D%5E1_0)

</span>
Q-2r=4, therefore: q=4+2r.
Plug the value of q into q+r=37, so you get:
4+2r+r=37
3r=37-4=33
3r=33
Therefore: r=11.
q-2r=4, but r=11, so:
q-2(11)=4
q-22=4
Therefore q=26.
Check if the answer is correct using second equation:
q=4+2r=4+2(11)=4+22=26.
So: q=26 and r=11.
The correct answer is true because the number do not repeat