1² + 3² + 4² + 4(n - 1)² = ¹/₃n(2n - 1)(2n + 1)
1² + 3² + 4² + (2n - 2)² = ¹/₃n(2n - 1)(2n + 1)
1 + 9 + 16 + (2n - 2)(2n - 2) = ¹/₃n(2n(2n + 1) - 1(2n + 1))
10 + 16 + (2n(2n - 2) - 2(2n - 2)) = ¹/₃n(2n(2n) + 2n(1) - 1(2n) - 1(1) 16 + (2n(2n) - 2n(2) - 2(2n) + 2(2)) = ¹/₃n(4n² + 2n - 2n - 1)
26 + (4n² - 4n - 4n + 4) = ¹/₃n(4n² - 1)
26 + (4n² - 8n + 4) = ¹/₃n(4n² - 1)
26 + 4n² - 8n + 4 = ¹/₃n(4n²) - ¹/₃n(1)
4n² - 8n + 4 + 26 = 1¹/₃n³ - ¹/₃n
4n² - 8n + 30 = 1¹/₃n³ - ¹/₃n
+ ¹/₃n + ¹/₃n
4n² - 7²/₃n + 30 = 1¹/₃n³
-1¹/₃n³ + 4n² - 7²/₃n + 30 = 0
-3(-1¹/₃n³ + 4n² - 7²/₃n + 30) = -3(0)
-3(-1¹/₃n³) - 3(4n²) - 3(-7²/₃n) - 3(30) = 0
4n³ - 12n² + 23n - 90 = 0
Answer:
s ∈ (25.5,34.5)
''s'' is in inches unit
s ∈ IR
Step-by-step explanation:
We know that the perimeter of a square is
Where P is the perimeter and s is the length of a side.
We want the perimeter to be greater than 102 inches but less than 138 inches.
We can write :
102 inches < P < 138 inches
If we replace P = 4s in the expression :
102 inches < 4s < 138 inches
Dividing by ''4''
25.5 inches < s < 34.5 inches
If we want the perimeter to be greater than 102 inches but less than 138 inches the length of a side must be greater than 25.5 inches but less than 34.5 inches.
Writing this in interval notation
s ∈ (25.5,34.5)
s ∈ IR
In scientfic notation, it would be:
5.4 * 10^6
Answer:
Step-by-step explanation:
f(1/2)=x2
f(1/2)=1/2^2
f(1/2)=1/4
Answer:
1.7
Step-by-step explanation:
The base is the thing(s) that are not the powers (exponents)