The answer would be C) As the number of hours of studying increases, test scores increase because the scatterplot has a cluster that increases from left to right.
Any questions? Ask me in the comments bellow.
Hope this helps. :)
The remaining of them is to get the math app can’t do it for me
A1 = 4
a2 = 5a1 = 5 x 4 = 20
a3 = 5a2 = 5 x 20 = 100
a4 = 5a3 = 5 x 100 = 500
a5 = 5a4 = 5 x 500 = 2,500
Tn = ar^(n-1); where a = 4, r = 5
Tn = 4(5)^(n-1) = 4/5 (5)^n
Explicit formular is Tn = 4/5 (5)^n
Recursive formular is
For this case, the first thing we must do is define variables.
We have then:
x: number of pens
y: number of pencils
We now write the system of inequations:

The solution to the system of inequations is given by the shaded region.
Note: see attached image.
<h2>
Answer:</h2><h3>
A. Domain </h3>
The domain of a function is the x-values that the graph applies to. This means that the domain is whatever x-values the graph crosses. All vertical parabolas (like the one pictured) have a domain of all reals. This is because any x-value could be plugged into the function and provide a y-value. while it may not seem like it, that graph will cover every single x-value in existence.
<h3>
B. Range</h3>
The range is similar to the domain but is for y-values. So, the range is whatever y-values the graph applies to and crosses. As you can see from the graph, there are no y-values above 1. This means the range is y≤1.
<h3>
C. Increasing Interval</h3>
A graph is increasing when the y-values are increasing. So, on the parent function of a parabola, the graph increases to the right and decreases to the left. However, this graph is inverted and shifted to the left, so the interval will also be flipped and shifted. In this case, the graph increases from -∞ to 2.
- Increasing Interval = [-∞, 2]
<h3>
D. Decreasing Interval</h3>
The decreasing interval is very similar to the increasing interval. This interval applies when the y-values are decreasing as the x-values increase. For a parabola, the increasing and decreasing intervals always meet at the x-value of the vertex, which is 2 on this graph. The y-values decrease during the interval 2 to ∞.
- Decreasing Interval = [2, ∞]
<h3>
E. Opening</h3>
The direction of a parabola is decided by the sign (+ or -) of the leading coefficient. Positive coefficients open up and negative opens down. As you can see from the graph, the sides of the parabola point downwards. This means that the leading coefficient must be negative.
<h3>
F. Min and Max</h3>
A parabola will always only have a min or a max, never both. If a graph opens up it has a min because there is one y-value which is the minimum possible y-value. Graphs that open downwards have a maximum because there is one y-value that is the largest possible. So, this graph has a maximum of 1 because that is the largest possible y-value.