Find the mode of 3, 6, 4, 3, 2, 4, 7, 8, 6, 3, 9
lions [1.4K]
Answer:
3 is the mode because it appears most often.
Step-by-step explanation:
The answer you are looking for is -11/10 or - 1 1/10.
To find this answer you must first make the denominators the same. To do this, multiply 2/5 by 2/2 to get 4/10. Finally, subtract the two fractions, keeping in mind the denominators stay the same. -7/10 - 4/10 = -11/10 or - 1 1/10.
I hope this helps!
Considering the Central Limit Theorem, we have that:
a) The probability cannot be calculated, as the underlying distribution is not normal and the sample size is less than 30.
b) The probability can be calculated, as the sample size is greater than 30.
<h3>What does the Central Limit Theorem state?</h3>
It states that the sampling distribution of sample means of size n is approximately normal has standard deviation
, as long as the underlying distribution is normal or the sample size is greater than 30.
In this problem, the underlying distribution is skewed right, that is, not normal, hence:
- For item a, the probability cannot be calculated, as the underlying distribution is not normal and the sample size is less than 30.
- For item b, the probability can be calculated, as the sample size is greater than 30.
More can be learned about the Central Limit Theorem at brainly.com/question/16695444
#SPJ1
question:
How many cubes with side lengths of \dfrac12 \text{ cm} 2 1 cmstart fraction, 1, divided by, 2, end fraction, start text, space, c, m, end text does it take to fill the prism?
Step-by-step explanation:
81 cubes are needed to fill the prism
Step-by-step explanation:
Volume of prism = 3 cubic units
Side lengths of cube = 1/3
Therefore the volume of the cube is,
V = a³ (a = side of the cube)
V = 1/3 × 1/3 × 1/3
= ( 1/3 )³
= 1/27 cubic units
To find the number of cubes needed to fill the prism, we need to divide the volume of cube by volume of the prism.
Number of cubes to fill the prism= Volume of prism / Volume of cube
= 3÷1/27
=3×27/1
= 81
Therefore, 81 cubes are needed to fill the prism
20%
100%(total points possibly given)
- 80% (points received)
equals 20%