Step 1- Find the Greatest common factor (GCF)
GCF = 3
Step 2- Factor out the GCF (Write the GCF first. Then, in parentheses, divide each term by the GCF.)
3(15x^xy^2/3 + -3x^3y/3 + 75x^4/3)
Step 3- Simplify each term in the parentheses
3(5x^xy^2 - x^3y + 25x^4)
Answer:
It would be 8
Step-by-step explanation:
20% of 40 is 8
Answer:
La opción correcta es;
B.2 m 0,25 m
Step-by-step explanation:
Por lo que los parámetros dados son;
La distancia horizontal de la rampa = 4 my la altura de la rampa = 0,5 m
Por lo tanto, tenemos la pendiente de la rampa = La relación entre la altura y la distancia horizontal de la rampa dada de la siguiente manera;
La pendiente de la rampa = 0.5 / 4 = 1/8
De las opciones dadas, tenemos;
Opción A. La pendiente de la rampa = 0,20 / 1 = 1/5
Opción B. La pendiente de la rampa = 0,25 / 2 = 1/8
Opción C. La pendiente de la rampa = 1/2
Opción D. La pendiente de la rampa = 1,5 / 3 = 1/2
Por tanto, la opción que tiene la misma pendiente que la rampa A es la opción B
<h2>2.</h2><h3>Given</h3>
<h3>Find</h3>
- y·y'' +x·y' -16 in simplest form
<h3>Solution</h3>
It is convenient to expand the expression for y to ease determination of derivatives.
... y = 4x -6x²
... y' = 4 -12x
... y'' = -12
Then the differential expression can be written as
... (4x -6x²)(-12) +x(4 -12x) -16
... = -48x +72x² +4x -12x² -16
... = 60x² -44x -16
<h2>3.</h2><h3>Given</h3>
<h3>Find</h3>
- the turning points
- the extreme(s)
<h3>Solution</h3>
The derivative is
... y' = -16x^-2 + x^2
This is zero at the turning points, so
... -16/x^2 +x^2 = 0
... x^4 = 16 . . . . . . . . . multiply by x^2, add 16
... x^2 = ±√16 = ±4
We're only interested in the real values of x, so
... x = ±√4 = ±2 . . . . . . . x-values at the turning points
Then the turning points are
... y = 16/-2 +(-2)³/3 = -8 +-8/3 = -32/3 . . . . for x = -2
... y = 16/2 + 2³/3 = 8 +8/3 = 32/3 . . . . . . . for x = 2
The maximum is (-2, -10 2/3); the minimum is (2, 10 2/3).
Sheila is c+2 if that’s what your asking