Answer:
4
Step-by-step explanation:
if there are 6 numbers on the dice and he rolls it 24 times all you have to do is 24/6 and you get that he is expect to get a 5 4 times
Since f(x) is written in vertex form with a negtive vertical expansion factor, we know it opens downward and the maximum is at the vertex, 3.
Since we have a graph of g(x), we can read the maximum from the graph, 4.
We can determine which function has the largest maximum by noting that the largest maximum is 4 and that it corresponds to function g(x).
![\bf \lim\limits_{x\to \infty}~\left( \cfrac{1}{8} \right)^x\implies \lim\limits_{x\to \infty}~\cfrac{1^x}{8^x}\\\\[-0.35em] ~\dotfill\\\\ \stackrel{x = 10}{\cfrac{1^{10}}{8^{10}}}\implies \cfrac{1}{8^{10}}~~,~~ \stackrel{x = 1000}{\cfrac{1^{1000}}{8^{1000}}}\implies \cfrac{1}{8^{1000}}~~,~~ \stackrel{x = 100000000}{\cfrac{1^{100000000}}{8^{100000000}}}\implies \cfrac{1}{8^{100000000}}~~,~~ ...](https://tex.z-dn.net/?f=%5Cbf%20%5Clim%5Climits_%7Bx%5Cto%20%5Cinfty%7D~%5Cleft%28%20%5Ccfrac%7B1%7D%7B8%7D%20%5Cright%29%5Ex%5Cimplies%20%5Clim%5Climits_%7Bx%5Cto%20%5Cinfty%7D~%5Ccfrac%7B1%5Ex%7D%7B8%5Ex%7D%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7Bx%20%3D%2010%7D%7B%5Ccfrac%7B1%5E%7B10%7D%7D%7B8%5E%7B10%7D%7D%7D%5Cimplies%20%5Ccfrac%7B1%7D%7B8%5E%7B10%7D%7D~~%2C~~%20%5Cstackrel%7Bx%20%3D%201000%7D%7B%5Ccfrac%7B1%5E%7B1000%7D%7D%7B8%5E%7B1000%7D%7D%7D%5Cimplies%20%5Ccfrac%7B1%7D%7B8%5E%7B1000%7D%7D~~%2C~~%20%5Cstackrel%7Bx%20%3D%20100000000%7D%7B%5Ccfrac%7B1%5E%7B100000000%7D%7D%7B8%5E%7B100000000%7D%7D%7D%5Cimplies%20%5Ccfrac%7B1%7D%7B8%5E%7B100000000%7D%7D~~%2C~~%20...)
now, if we look at the values as "x" races fast towards ∞, we can as you see above, use the values of 10, 1000, 100000000 and so on, as the value above oddly enough remains at 1, it could have been smaller but it's constantly 1 in this case, the value at the bottom is ever becoming a larger and larger denominator.
let's recall that the larger the denominator, the smaller the fraction, so the expression is ever going towards a tiny and tinier and really tinier fraction, a fraction that is ever approaching 0.
Zero coupon bonds do not earn interest. It is usually sold at a big discount and its redeemable value if beyond its face value will only be redeemed once it reaches maturity.
TIPS stands for Treasury Inflation Protected Securities.
TIPS:
2,500 x 2% x 5 years = 250
2,500 + 250 = 2,750
Zero coupon bond after 5 years: 2,500
Maximum real value of his bonds if he sells them today.
2,750 + 2,500 = 5,250
Answer:
≈ 7.80
Step-by-step explanation: