Answer:
We kindly invite you to see the result in the image attached below.
The number in polar form is
.
Step-by-step explanation:
A complex number is represented by elements of the form
, for all
,
. The first part of the sum is the real component of the complex number, whereas the second part of the sum is the imaginary component of the complex number. The real component is located on the horizontal axis and the imaginary component on the vertical axis.
Now we proceed to present the point on the graph: (
,
) We kindly invite you to see the result in the image attached below.
The polar form of the complex number is defined by:
(1)
Where:
- Magnitude of the complex number, dimensionless.
- Direction of the complex number, measured in radians.
The magnitude and the direction of the complex number are defined by the following formulas:
Magnitude
(2)
Direction
(3)
If we know that
and
, then the polar form of the number is:





The number in polar form is
.
Answer:
C is probably the answer
Step-by-step explanation:
1.9 Is approximately 2
2.3 Is approximately 2
2.2 is also approximated to 2
1.8 Is also approximately 2
VERTEXTo determine the vertex (coordinate x) of parabola y = ax² + bx + c, use this following formula
x vertex =

y = x² - 2x - 48
a = 1, b = -2, c = -48
plug in the numbers
x vertex =

x vertex =

x vertex =

x vertex = 1
To find y vertex, substitute the value of x vertex to the parabola equation
y = x² - 2x - 48
y = 1² - 2(1) - 48
y = 1 - 2 - 48
y = -49
The vertex is (1, -49)X-INTERCEPTx-intercept located in x axis, that means y = 0. Substitute y = 0 to the parabola equation
x² - 2x - 48 = y
x² - 2x - 48 = 0
(x - 8)(x + 6) = 0
x = 8 or x = -6
The x-intercepts are (8,0) and (-6,0)The answer is first option
Answer:
So this is a negative slope remember this. We are going to use y = mx + b
m is the slope b is the y intercept. In this problem, the y intercept is 6.
The slope is -2;
Y = -2x + 6
Step-by-step explanation:
Answer: I think it's a relflection over x-axis followed by a rotation of 180 degrees which is b
Step-by-step explanation: