1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KatRina [158]
2 years ago
11

In ΔLMN, n = 510 cm, l = 820 cm and ∠M=20°. Find ∠L, to the nearest degree

Mathematics
1 answer:
Dafna11 [192]2 years ago
8 0

The angular measure L is : 47°

<h3>What are angles?</h3>

Angles are formed when two lines meet.

Analysis:

Firstly, we calculate for m using cosine rule.

m^{2} = 510^{2} + 820^{2} -2(510)(820) cos 20

m^{2} = 260100 + 672400 -83600(0.9396)

m^{2} = 146618.56

m = \sqrt{146618.56} = 382.9cm

using sine rule to find ∠L

382.9/sin20 = 820/sinL

sinL = 820sin20/382.9

sinL = 820(0.342)/382.9

sinL = 0.732

L = sin inverse of 0.732 = 47°

In conclusion, ∠L is 47°

Learn more about sine and cosine rule: brainly.com/question/4372174

#SPJ1

You might be interested in
Plz help, so confused, will report, just need these answers and explainations, correctly, thanks:)
Bad White [126]

Answer: 35

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
What is the diameter of a cone if the volume is 134 and the height is 8
patriot [66]

Answer:

times it

Step-by-step explanation:

5 0
3 years ago
Please help me!
Vinil7 [7]
It’s the set of all possible outcomes
7 0
3 years ago
Read 2 more answers
Help with 2&amp;3?? Please will mark brainiest of correct
Murrr4er [49]
2 wrong 3 right because you might added wrong
5 0
3 years ago
Read 2 more answers
Please help me solve this problem ASAP
DiKsa [7]

\bold{\huge{\blue{\underline{ Solution }}}}

<h3><u>Given </u><u>:</u><u>-</u></h3>

  • <u>The </u><u>right </u><u>angled </u><u>below </u><u>is </u><u>formed </u><u>by </u><u>3</u><u> </u><u>squares </u><u>A</u><u>, </u><u> </u><u>B </u><u>and </u><u>C</u>
  • <u>The </u><u>area </u><u>of </u><u>square </u><u>B</u><u> </u><u>has </u><u>an </u><u>area </u><u>of </u><u>1</u><u>4</u><u>4</u><u> </u><u>inches </u><u>²</u>
  • <u>The </u><u>area </u><u>of </u><u>square </u><u>C </u><u>has </u><u>an </u><u>of </u><u>1</u><u>6</u><u>9</u><u> </u><u>inches </u><u>²</u>

<h3><u>To </u><u>Find </u><u>:</u><u>-</u></h3>

  • <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>area </u><u>of </u><u>square </u><u>A</u><u>? </u>

<h3><u>Let's </u><u>Begin </u><u>:</u><u>-</u><u> </u></h3>

The right angled triangle is formed by 3 squares

<u>We </u><u>have</u><u>, </u>

  • Area of square B is 144 inches²
  • Area of square C is 169 inches²

<u>We </u><u>know </u><u>that</u><u>, </u>

\bold{ Area \: of \: square =  Side × Side }

Let the side of square B be x

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ 144 =  x × x }

\sf{ 144 =  x² }

\sf{ x = √144}

\bold{\red{ x = 12\: inches }}

Thus, The dimension of square B is 12 inches

<h3><u>Now, </u></h3>

Area of square C = 169 inches

Let the side of square C be y

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ 169 =  y × y }

\sf{ 169 =  y² }

\sf{ y = √169}

\bold{\green{ y = 13\: inches }}

Thus, The dimension of square C is 13 inches.

<h3><u>Now, </u></h3>

It is mentioned in the question that, the right angled triangle is formed by 3 squares

The dimensions of square be is x and y

Let the dimensions of square A be z

<h3><u>Therefore</u><u>, </u><u>By </u><u>using </u><u>Pythagoras </u><u>theorem</u><u>, </u></h3>

  • <u>The </u><u>sum </u><u>of </u><u>squares </u><u>of </u><u>base </u><u>and </u><u>perpendicular </u><u>height </u><u>equal </u><u>to </u><u>the </u><u>square </u><u>of </u><u>hypotenuse </u>

<u>That </u><u>is</u><u>, </u>

\bold{\pink{ (Perpendicular)² + (Base)² = (Hypotenuse)² }}

<u>Here</u><u>, </u>

  • Base = x = 12 inches
  • Perpendicular = z
  • Hypotenuse = y = 13 inches

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ (z)² + (x)² = (y)² }

\sf{ (z)² + (12)² = (169)² }

\sf{ (z)² + 144 = 169}

\sf{ (z)² = 169 - 144 }

\sf{ (z)² = 25}

\bold{\blue{ z = 5 }}

Thus, The dimensions of square A is 5 inches

<h3><u>Therefore</u><u>,</u></h3>

Area of square

\sf{ = Side × Side }

\sf{ = 5 × 5  }

\bold{\orange{ = 25\: inches }}

Hence, The area of square A is 25 inches.

6 0
2 years ago
Other questions:
  • In a 45°-45°-90° triangle, the length of the hypotenuse is 11. Find the length of one of the legs.
    14·1 answer
  • What number(s) is between 0.325 and 0.35 in decimal form
    10·1 answer
  • find the value of tan (a-b) if cos a=4/5 on the interval (270, 360) and sin b=-5/13 on the interval (270, 360)
    6·1 answer
  • A sphere and a cylinder have the same radius and height. The volume of the cylinder is 11 feet cubed.
    12·2 answers
  • How do I write a compound inequality?
    6·1 answer
  • Pls write the steps u did​
    15·1 answer
  • Solve for the variable then find the missing angle.
    6·1 answer
  • PLEASE HELP ASAP 30P!
    13·1 answer
  • What is the common ratio of 17, 51, 153, 459,.....
    14·2 answers
  • Use the distributive property to write an equivalent expression.<br> 4(4q+8r)
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!