Answer:
96 pints
Step-by-step explanation:
Answer:
D
Step-by-step explanation:
If you have ten feet on one side and 8 feet on another mulitiply and 10 times 8 is 80 so theres your answer
Given :
- CD is the altitude to AB.
A = 65°.
To find :
- the angles in △CBD and △CAD if m∠A = 65°
Solution :
In Right angle △ABC,
we have,
=> ACB = 90°
=>
CAB = 65°.
So,
=>
ACB +
CAB+
ZCBA = 180° (By angle sum Property.)
=> 90° + 65° +
CBA = 180°
=> 155° +
CBA = 180°
=>
CBA = 180° - 155°
=>
CBA = 25°.
In △CDB,
=> CD is the altitude to AB.
So,
=>
CDB = 90°
=>
CBD =
CBA = 25°.
So,
=>
CBD +
DCB = 180° (Angle sum Property.)
=> 90° +25° +
DCB = 180°
=> 115° +
DCB = 180°
=>
DCB = 180° - 115°
=>
DCB = 65°.
Now, in △ADC,
=> CD is the altitude to AB.
So,
=>
ADC = 90°
=>
CAD =
CAB = 65°.
So,
=>
ADC +
CAD +
DCA = 180° (Angle sum Property.)
=> 90° + 65° +
DCA = 180°
=> 155° +
DCA = 180°
=>
DCA = 180° - 155°
=>
DCA = 25°
Hence, we get,
DCA = 25°
DCB = 65°
CDB = 90°
ACD = 25°
ADC = 90°.
Answer:
+
*LN(|
|) +C
Step-by-step explanation:
we will have to do a trig sub for this
use x=a*tanθ for sqrt(x^2 +a^2) where a=2
x=2tanθ, dx= 2 sec^2 (θ) dθ
this turns
into integral(sqrt( [2tanθ]^2 +4) * 2sec^2 (θ) )dθ
the sqrt( [2tanθ]^2 +4) will condense into 2sec^2 (θ) after converting tan^2(θ) into sec^2(θ) -1
then it simplifies into integral(4*sec^3 (θ)) dθ
you will need to do integration by parts to work out the integral of sec^3(θ) but it will turn into (1/2)sec(θ)tan(θ) + (1/2) LN(|sec(θ)+tan(θ)|) +C
then you will need to rework your functions of θ back into functions of x
tanθ will resolve back into
(see substitutions) while secθ will resolve into
sec(θ)=
is from its ratio identity of hyp/adj where the hyp. is
and adj is 2 (see tan(θ) ratio)
after resolving back into functions of x, substitute ratios for trig functions:
=
+
*LN(|
|) +C
Step-by-step explanation:
7. There is no tree diagram, sticking it as impossible to solve at the moment.
8. The temperature went down 5 degrees and then goes up 7 degrees. The low temperature is -5.
9. The formula is
, or 1/8