Answer:
<3, 7> and [3 7], b and c
Step-by-step explanation:
multiply the vector by the matrix {1 0} (top row) {0 -1} bottom row. So you flip the sign of the -7 and this gives us +7.
Answer:
the unknown number is -13
Step-by-step explanation:
4n -7 = -59
4n = -59 +7
n= -52 /4
n = -13
Answer:
1. <em><u>(</u></em><em><u>x^</u></em><em><u>3</u></em><em><u>+</u></em><em><u>7</u></em><em><u>x</u></em><em><u>^</u></em><em><u>2</u></em><em><u>+</u></em><em><u>8</u></em><em><u>x</u></em><em><u>-</u></em><em><u>1</u></em><em><u>6</u></em><em><u>)</u></em><em><u> </u></em><em><u>;</u></em><em><u> </u></em><em><u>domain</u></em><em><u>:</u></em><em><u> </u></em><em><u>R</u></em><em><u> </u></em><em><u>(</u></em><em><u>all</u></em><em><u> </u></em><em><u>real</u></em><em><u> </u></em><em><u>number</u></em><em><u>)</u></em>
<em><u>2</u></em><em><u>.</u></em><em><u> </u></em><em><u>(</u></em><em><u>x-1</u></em><em><u>)</u></em><em><u> </u></em><em><u>;</u></em><em><u> </u></em><em><u>domain</u></em><em><u>:</u></em><em><u> </u></em><em><u>R-</u></em><em><u>(</u></em><em><u>-</u></em><em><u>4</u></em><em><u>)</u></em><em><u> </u></em><em><u> </u></em><em><u>{</u></em><em><u>all</u></em><em><u> </u></em><em><u>real</u></em><em><u> </u></em><em><u>number</u></em><em><u> </u></em><em><u>except</u></em><em><u> </u></em><em><u>(</u></em><em><u>-</u></em><em><u>4</u></em><em><u>)</u></em>
Step-by-step explanation:
f*g= f(x) and g(x)
i.e, f*g= (x^2+3x-4)(x+4)
i.e, f*g= x^3+3x^2-4x+4x^2+12x-16
i.e, f*g=x^3+7x^2+8x-16
it's domain is R, i.e, all real number!
f/g=(x^2+3x-4)/(x+4)
i.e, f/g={(x+4)(x-1)}/4
i.e,f/g=x-1
it's domain is all real number,except the number at which (x+4) becomes 0, i.e, x= (-4), -4 is not in domain!
✌️;)
Answer:
- 60
Step-by-step explanation:
add together all the quatile
Answer:
0.8340
Step-by-step explanation:
The aim of this question is to find the probability that the student makes it to the second class prior to when the lecture commences.
Provided that A, B, and C are independent of each other from the full complete question.
Then; we want P(A + C < B)
So A
N (2, 1.5)
B
N (10, 1)
C
N (6, 1)
P(A + C - B < 0)
Since they are normally distributed( i.e. A + C - B)
Then;
E(A + C -B) = E(A) + E(C) - (B)
E(A + C -B) = 2 - 10 + 6
E(A + C -B) = -2
Var(A+C -B) = Var(A) + Var (B) + Var (C)
Var(A + C -B) = (1.5)² + (1)² + (1)²
Var(A + C -B) = 4.25
The standard deviation = 
The standard deviation = 2.06155


