Answer:
b. 
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Functions
- Function Notation
- Exponential Rule [Rewrite]:
- Exponential Rule [Root Rewrite]:
<u>
</u>
<u>Calculus</u>
Derivatives
Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
<em />
<em />
<em />
<u>Step 2: Differentiate</u>
- Rewrite function [Exponential Rule - Root Rewrite]:
![\displaystyle H(x) = [F(x)]^\bigg{\frac{1}{3}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%28x%29%20%3D%20%5BF%28x%29%5D%5E%5Cbigg%7B%5Cfrac%7B1%7D%7B3%7D%7D)
- Chain Rule:
![\displaystyle H'(x) = \frac{d}{dx} \bigg[ [F(x)]^\bigg{\frac{1}{3}} \bigg] \cdot \frac{d}{dx}[F(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%27%28x%29%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5BF%28x%29%5D%5E%5Cbigg%7B%5Cfrac%7B1%7D%7B3%7D%7D%20%5Cbigg%5D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5BF%28x%29%5D)
- Basic Power Rule:
![\displaystyle H'(x) = \frac{1}{3}[F(x)]^\bigg{\frac{1}{3} - 1} \cdot F'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%27%28x%29%20%3D%20%5Cfrac%7B1%7D%7B3%7D%5BF%28x%29%5D%5E%5Cbigg%7B%5Cfrac%7B1%7D%7B3%7D%20-%201%7D%20%5Ccdot%20F%27%28x%29)
- Simplify:
![\displaystyle H'(x) = \frac{F'(x)}{3}[F(x)]^\bigg{\frac{-2}{3}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%27%28x%29%20%3D%20%5Cfrac%7BF%27%28x%29%7D%7B3%7D%5BF%28x%29%5D%5E%5Cbigg%7B%5Cfrac%7B-2%7D%7B3%7D%7D)
- Rewrite [Exponential Rule - Rewrite]:
![\displaystyle H'(x) = \frac{F'(x)}{3[F(x)]^\bigg{\frac{2}{3}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%27%28x%29%20%3D%20%5Cfrac%7BF%27%28x%29%7D%7B3%5BF%28x%29%5D%5E%5Cbigg%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D)
<u>Step 3: Evaluate</u>
- Substitute in <em>x</em> [Derivative]:
![\displaystyle H'(5) = \frac{F'(5)}{3[F(5)]^\bigg{\frac{2}{3}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%27%285%29%20%3D%20%5Cfrac%7BF%27%285%29%7D%7B3%5BF%285%29%5D%5E%5Cbigg%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D)
- Substitute in function values:

- Exponents:

- Multiply:

- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e
Answer:
Inverse of f exists.
Step-by-step explanation:
From the graph attached,
If we do the horizontal line test for the function graphed,
We find the function as one to one function.
In other words for every input value (x-value) there is a different output value.
Since, for one-to-one functions, inverse of the functions exist.
Therefore, the answer will be,
The inverse of 'f' exists.
Answer:
<h2>C. g(x) = x - 6</h2>
Step-by-step explanation:
For a parent function y = f(x) and n > 0:
f(x) + n : move the graph n units up
f(x) - n : move the graph n units down
f(x + n) : move the graph n units to the left
f(x - n) : move the graph n units to the right
===================================================
We have
f(x) = x
Transformation: 6 units down
f(x) - 6 = x - 6
Answer:
31 Minutes
Step-by-step explanation:
4.78 = 0.15 + 0.58
0.15m = 4.78 - 0.58
m = 4.78 - 0.58 divided by 0.15 = 28 minutes
So in total we have 28 + 3 = 31 minutes