A way to add fractions that always works is to multiply each numerator by the denominator of the other, then express the sum of products over the product of the denominators.
![\dfrac{a}{b}+\dfrac{c}{d}=\dfrac{a}{b}\cdot\dfrac{d}{d}+\dfrac{c}{d}\cdot\dfrac{b}{b}\\\\=\dfrac{ad+bc}{bd}](https://tex.z-dn.net/?f=%5Cdfrac%7Ba%7D%7Bb%7D%2B%5Cdfrac%7Bc%7D%7Bd%7D%3D%5Cdfrac%7Ba%7D%7Bb%7D%5Ccdot%5Cdfrac%7Bd%7D%7Bd%7D%2B%5Cdfrac%7Bc%7D%7Bd%7D%5Ccdot%5Cdfrac%7Bb%7D%7Bb%7D%5C%5C%5C%5C%3D%5Cdfrac%7Bad%2Bbc%7D%7Bbd%7D)
Here, you have
The sum is -1 1/12
Answer:
B
Step-by-step explanation:
all sides are the same
Answer:
All angles in a triangle sum up to 180 degrees.
So, 63+71+x=180 degrees.
You add like terms: 134, and then add x.
134+x=180 degrees.
Minus x from both sides.
180-134=x.
What do you think x is?
Answer:
x=3
y=5
Step-by-step explanation:
x+5y=28 (i)
-x-2y=-13. (ii)
add equation 2 from equation 1
x+5y=28
-x-2y=-13
3y=15
y=5
put the value of y in equation 1
x+5y=28
x+5*5=28
x+25=28
x=28-25
x=3