The trigonometric ratios show that the angle FHE is 48.59°.
<h3>RIGHT TRIANGLE</h3>
A triangle is classified as a right triangle when it presents one of your angles equal to 90º. The greatest side of a right triangle is called hypotenuse. And, the other two sides are called cathetus or legs.
The math tools applied for finding angles or sides in a right triangle are the trigonometric ratios or the Pythagorean Theorem.
The Pythagorean Theorem says:
. And the main trigonometric ratios are:
![sin(\alpha) =\frac{opposite \;leg }{hypotenuse} \\ \\ cos(\alpha) =\frac{adjacent\;leg }{hypotenuse} \\ \\ tan(\alpha) =\frac{sin(\alpha )}{cos(\alpha )}= \frac{opposite \;leg }{adjacent\;leg } \\ \\](https://tex.z-dn.net/?f=sin%28%5Calpha%29%20%3D%5Cfrac%7Bopposite%20%5C%3Bleg%20%7D%7Bhypotenuse%7D%20%5C%5C%20%5C%5C%20cos%28%5Calpha%29%20%3D%5Cfrac%7Badjacent%5C%3Bleg%20%7D%7Bhypotenuse%7D%20%5C%5C%20%5C%5C%20tan%28%5Calpha%29%20%3D%5Cfrac%7Bsin%28%5Calpha%20%29%7D%7Bcos%28%5Calpha%20%29%7D%3D%20%5Cfrac%7Bopposite%20%5C%3Bleg%20%7D%7Badjacent%5C%3Bleg%20%7D%20%5C%5C%20%5C%5C)
It is important to remember that the sum of internal angles for any triangle is 180°.
From the question, it is possible to see 2 right triangles (HGF and FHE).
You can find the hypotenuse of the triangle HGF from the trigonometric ratio: sen Θ
![sin45=\frac{opposite\; leg }{hypotenuse} =\frac{\sqrt8}{hypotenuse}\\ \\ \frac{\sqrt{2} }{2} =\frac{\sqrt{8} }{hypotenuse} \\ \\ \sqrt{2}*hypotenuse=2\sqrt{8} \\ \\ hypotenuse=\frac{2\sqrt{8} }{\sqrt{2}} =2\sqrt{4} =2*2=4](https://tex.z-dn.net/?f=sin45%3D%5Cfrac%7Bopposite%5C%3B%20leg%20%7D%7Bhypotenuse%7D%20%3D%5Cfrac%7B%5Csqrt8%7D%7Bhypotenuse%7D%5C%5C%20%5C%5C%20%5Cfrac%7B%5Csqrt%7B2%7D%20%7D%7B2%7D%20%3D%5Cfrac%7B%5Csqrt%7B8%7D%20%7D%7Bhypotenuse%7D%20%5C%5C%20%5C%5C%20%5Csqrt%7B2%7D%2Ahypotenuse%3D2%5Csqrt%7B8%7D%20%5C%5C%20%5C%5C%20hypotenuse%3D%5Cfrac%7B2%5Csqrt%7B8%7D%20%7D%7B%5Csqrt%7B2%7D%7D%20%3D2%5Csqrt%7B4%7D%20%3D2%2A2%3D4)
The hypotenuse of triangle HGF is one of legs for the triangle FHE. The, you can find the angle FHE from the trigonometric ratio: tan β. Thus,
![sin \beta =\frac{opposite\; leg }{adjacent\; leg} =\frac{3}{4}\\ \\ sin \beta=\frac{3}{4}=0.84806\\ \\ arcsin\beta =48.59^{\circ \:}](https://tex.z-dn.net/?f=sin%20%5Cbeta%20%3D%5Cfrac%7Bopposite%5C%3B%20leg%20%7D%7Badjacent%5C%3B%20leg%7D%20%3D%5Cfrac%7B3%7D%7B4%7D%5C%5C%20%5C%5C%20sin%20%5Cbeta%3D%5Cfrac%7B3%7D%7B4%7D%3D0.84806%5C%5C%20%5C%5C%20arcsin%5Cbeta%20%3D48.59%5E%7B%5Ccirc%20%5C%3A%7D)
Learn more about trigonometric ratios here:
brainly.com/question/11967894
#SPJ1