What is the solution to
0" id="TexFormula1" title=" \sqrt{ - x} = \sqrt{x + 13} " alt=" \sqrt{ - x} = \sqrt{x + 13} " align="absmiddle" class="latex-formula">
2 answers:
Answer:

Step-by-step explanation:
![~~~~~\sqrt{-x} = \sqrt{x+13}\\\\\implies -x= x+13~~~~~~~~~~~~~~~~;[\text{Square on both sides}]\\\\\implies -x -x = 13\\\\\implies -2x = 13\\\\\implies x = -\dfrac{13}2\\\\\text{Verify solution:}\\\\~~~~~~~\sqrt{-\left(- \dfrac{13} 2 \right)} = \sqrt{-\dfrac{13}2 +13}\\\\\\\implies \sqrt{\dfrac{13}2} = \sqrt{\dfrac{13}2}\\\\\text{Hence, the solution is}~ x=-\dfrac{13}2](https://tex.z-dn.net/?f=~~~~~%5Csqrt%7B-x%7D%20%3D%20%5Csqrt%7Bx%2B13%7D%5C%5C%5C%5C%5Cimplies%20-x%3D%20x%2B13~~~~~~~~~~~~~~~~%3B%5B%5Ctext%7BSquare%20on%20both%20sides%7D%5D%5C%5C%5C%5C%5Cimplies%20-x%20-x%20%3D%2013%5C%5C%5C%5C%5Cimplies%20-2x%20%3D%2013%5C%5C%5C%5C%5Cimplies%20x%20%3D%20-%5Cdfrac%7B13%7D2%5C%5C%5C%5C%5Ctext%7BVerify%20solution%3A%7D%5C%5C%5C%5C~~~~~~~%5Csqrt%7B-%5Cleft%28-%20%5Cdfrac%7B13%7D%202%20%5Cright%29%7D%20%3D%20%5Csqrt%7B-%5Cdfrac%7B13%7D2%20%2B13%7D%5C%5C%5C%5C%5C%5C%5Cimplies%20%5Csqrt%7B%5Cdfrac%7B13%7D2%7D%20%3D%20%5Csqrt%7B%5Cdfrac%7B13%7D2%7D%5C%5C%5C%5C%5Ctext%7BHence%2C%20the%20solution%20is%7D~%20x%3D-%5Cdfrac%7B13%7D2)
Answer: -6.5
Step-by-step explanation:
First, you take the values on both sides to the power of 2 to get:
-x = x + 13
Subtract x on both sides.
-2x = 13
Divide both sides by -2.
x = -6.5
You might be interested in
Answer:
x=1 and y=-3
Step-by-step explanation:
hope this helped :)
X - 3 < 9 or x + 5 ≥ 10
+ 3 + 3 - 5 - 5
x < 12 or x ≥ 5
Solution Set: {x|x < 12 or x ≥ 5}, (-∞, 12) or (5, ∞)
multiplication property of equality
Answer: Im not sure
Step-by-step explanation:
you didnt list/provide the graphs for me to answer. :I
2.50-2.00=0.5
2.50/0.5= 5 = 100%
2.00/0.5=4 = 80%
100-80= 20%